Annotation of rpl/lapack/lapack/zgbrfsx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB,
        !             2:      $                    LDAFB, IPIV, R, C, B, LDB, X, LDX, RCOND,
        !             3:      $                    BERR, N_ERR_BNDS, ERR_BNDS_NORM,
        !             4:      $                    ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK,
        !             5:      $                    INFO )
        !             6: *
        !             7: *     -- LAPACK routine (version 3.2.2)                                 --
        !             8: *     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
        !             9: *     -- Jason Riedy of Univ. of California Berkeley.                 --
        !            10: *     -- June 2010                                                    --
        !            11: *
        !            12: *     -- LAPACK is a software package provided by Univ. of Tennessee, --
        !            13: *     -- Univ. of California Berkeley and NAG Ltd.                    --
        !            14: *
        !            15:       IMPLICIT NONE
        !            16: *     ..
        !            17: *     .. Scalar Arguments ..
        !            18:       CHARACTER          TRANS, EQUED
        !            19:       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, KL, KU, NRHS,
        !            20:      $                   NPARAMS, N_ERR_BNDS
        !            21:       DOUBLE PRECISION   RCOND
        !            22: *     ..
        !            23: *     .. Array Arguments ..
        !            24:       INTEGER            IPIV( * )
        !            25:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            26:      $                   X( LDX , * ),WORK( * )
        !            27:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
        !            28:      $                   ERR_BNDS_NORM( NRHS, * ),
        !            29:      $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
        !            30: *     ..
        !            31: *
        !            32: *     Purpose
        !            33: *     =======
        !            34: *
        !            35: *     ZGBRFSX improves the computed solution to a system of linear
        !            36: *     equations and provides error bounds and backward error estimates
        !            37: *     for the solution.  In addition to normwise error bound, the code
        !            38: *     provides maximum componentwise error bound if possible.  See
        !            39: *     comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
        !            40: *     error bounds.
        !            41: *
        !            42: *     The original system of linear equations may have been equilibrated
        !            43: *     before calling this routine, as described by arguments EQUED, R
        !            44: *     and C below. In this case, the solution and error bounds returned
        !            45: *     are for the original unequilibrated system.
        !            46: *
        !            47: *     Arguments
        !            48: *     =========
        !            49: *
        !            50: *     Some optional parameters are bundled in the PARAMS array.  These
        !            51: *     settings determine how refinement is performed, but often the
        !            52: *     defaults are acceptable.  If the defaults are acceptable, users
        !            53: *     can pass NPARAMS = 0 which prevents the source code from accessing
        !            54: *     the PARAMS argument.
        !            55: *
        !            56: *     TRANS   (input) CHARACTER*1
        !            57: *     Specifies the form of the system of equations:
        !            58: *       = 'N':  A * X = B     (No transpose)
        !            59: *       = 'T':  A**T * X = B  (Transpose)
        !            60: *       = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
        !            61: *
        !            62: *     EQUED   (input) CHARACTER*1
        !            63: *     Specifies the form of equilibration that was done to A
        !            64: *     before calling this routine. This is needed to compute
        !            65: *     the solution and error bounds correctly.
        !            66: *       = 'N':  No equilibration
        !            67: *       = 'R':  Row equilibration, i.e., A has been premultiplied by
        !            68: *               diag(R).
        !            69: *       = 'C':  Column equilibration, i.e., A has been postmultiplied
        !            70: *               by diag(C).
        !            71: *       = 'B':  Both row and column equilibration, i.e., A has been
        !            72: *               replaced by diag(R) * A * diag(C).
        !            73: *               The right hand side B has been changed accordingly.
        !            74: *
        !            75: *     N       (input) INTEGER
        !            76: *     The order of the matrix A.  N >= 0.
        !            77: *
        !            78: *     KL      (input) INTEGER
        !            79: *     The number of subdiagonals within the band of A.  KL >= 0.
        !            80: *
        !            81: *     KU      (input) INTEGER
        !            82: *     The number of superdiagonals within the band of A.  KU >= 0.
        !            83: *
        !            84: *     NRHS    (input) INTEGER
        !            85: *     The number of right hand sides, i.e., the number of columns
        !            86: *     of the matrices B and X.  NRHS >= 0.
        !            87: *
        !            88: *     AB      (input) DOUBLE PRECISION array, dimension (LDAB,N)
        !            89: *     The original band matrix A, stored in rows 1 to KL+KU+1.
        !            90: *     The j-th column of A is stored in the j-th column of the
        !            91: *     array AB as follows:
        !            92: *     AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !            93: *
        !            94: *     LDAB    (input) INTEGER
        !            95: *     The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !            96: *
        !            97: *     AFB     (input) DOUBLE PRECISION array, dimension (LDAFB,N)
        !            98: *     Details of the LU factorization of the band matrix A, as
        !            99: *     computed by DGBTRF.  U is stored as an upper triangular band
        !           100: *     matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !           101: *     the multipliers used during the factorization are stored in
        !           102: *     rows KL+KU+2 to 2*KL+KU+1.
        !           103: *
        !           104: *     LDAFB   (input) INTEGER
        !           105: *     The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !           106: *
        !           107: *     IPIV    (input) INTEGER array, dimension (N)
        !           108: *     The pivot indices from DGETRF; for 1<=i<=N, row i of the
        !           109: *     matrix was interchanged with row IPIV(i).
        !           110: *
        !           111: *     R       (input or output) DOUBLE PRECISION array, dimension (N)
        !           112: *     The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           113: *     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           114: *     is not accessed.  R is an input argument if FACT = 'F';
        !           115: *     otherwise, R is an output argument.  If FACT = 'F' and
        !           116: *     EQUED = 'R' or 'B', each element of R must be positive.
        !           117: *     If R is output, each element of R is a power of the radix.
        !           118: *     If R is input, each element of R should be a power of the radix
        !           119: *     to ensure a reliable solution and error estimates. Scaling by
        !           120: *     powers of the radix does not cause rounding errors unless the
        !           121: *     result underflows or overflows. Rounding errors during scaling
        !           122: *     lead to refining with a matrix that is not equivalent to the
        !           123: *     input matrix, producing error estimates that may not be
        !           124: *     reliable.
        !           125: *
        !           126: *     C       (input or output) DOUBLE PRECISION array, dimension (N)
        !           127: *     The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           128: *     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           129: *     is not accessed.  C is an input argument if FACT = 'F';
        !           130: *     otherwise, C is an output argument.  If FACT = 'F' and
        !           131: *     EQUED = 'C' or 'B', each element of C must be positive.
        !           132: *     If C is output, each element of C is a power of the radix.
        !           133: *     If C is input, each element of C should be a power of the radix
        !           134: *     to ensure a reliable solution and error estimates. Scaling by
        !           135: *     powers of the radix does not cause rounding errors unless the
        !           136: *     result underflows or overflows. Rounding errors during scaling
        !           137: *     lead to refining with a matrix that is not equivalent to the
        !           138: *     input matrix, producing error estimates that may not be
        !           139: *     reliable.
        !           140: *
        !           141: *     B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           142: *     The right hand side matrix B.
        !           143: *
        !           144: *     LDB     (input) INTEGER
        !           145: *     The leading dimension of the array B.  LDB >= max(1,N).
        !           146: *
        !           147: *     X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           148: *     On entry, the solution matrix X, as computed by DGETRS.
        !           149: *     On exit, the improved solution matrix X.
        !           150: *
        !           151: *     LDX     (input) INTEGER
        !           152: *     The leading dimension of the array X.  LDX >= max(1,N).
        !           153: *
        !           154: *     RCOND   (output) DOUBLE PRECISION
        !           155: *     Reciprocal scaled condition number.  This is an estimate of the
        !           156: *     reciprocal Skeel condition number of the matrix A after
        !           157: *     equilibration (if done).  If this is less than the machine
        !           158: *     precision (in particular, if it is zero), the matrix is singular
        !           159: *     to working precision.  Note that the error may still be small even
        !           160: *     if this number is very small and the matrix appears ill-
        !           161: *     conditioned.
        !           162: *
        !           163: *     BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !           164: *     Componentwise relative backward error.  This is the
        !           165: *     componentwise relative backward error of each solution vector X(j)
        !           166: *     (i.e., the smallest relative change in any element of A or B that
        !           167: *     makes X(j) an exact solution).
        !           168: *
        !           169: *     N_ERR_BNDS (input) INTEGER
        !           170: *     Number of error bounds to return for each right hand side
        !           171: *     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           172: *     ERR_BNDS_COMP below.
        !           173: *
        !           174: *     ERR_BNDS_NORM  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           175: *     For each right-hand side, this array contains information about
        !           176: *     various error bounds and condition numbers corresponding to the
        !           177: *     normwise relative error, which is defined as follows:
        !           178: *
        !           179: *     Normwise relative error in the ith solution vector:
        !           180: *             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           181: *            ------------------------------
        !           182: *                  max_j abs(X(j,i))
        !           183: *
        !           184: *     The array is indexed by the type of error information as described
        !           185: *     below. There currently are up to three pieces of information
        !           186: *     returned.
        !           187: *
        !           188: *     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           189: *     right-hand side.
        !           190: *
        !           191: *     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           192: *     three fields:
        !           193: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           194: *              reciprocal condition number is less than the threshold
        !           195: *              sqrt(n) * dlamch('Epsilon').
        !           196: *
        !           197: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           198: *              almost certainly within a factor of 10 of the true error
        !           199: *              so long as the next entry is greater than the threshold
        !           200: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           201: *              be trusted if the previous boolean is true.
        !           202: *
        !           203: *     err = 3  Reciprocal condition number: Estimated normwise
        !           204: *              reciprocal condition number.  Compared with the threshold
        !           205: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           206: *              estimate is "guaranteed". These reciprocal condition
        !           207: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           208: *              appropriately scaled matrix Z.
        !           209: *              Let Z = S*A, where S scales each row by a power of the
        !           210: *              radix so all absolute row sums of Z are approximately 1.
        !           211: *
        !           212: *     See Lapack Working Note 165 for further details and extra
        !           213: *     cautions.
        !           214: *
        !           215: *     ERR_BNDS_COMP  (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           216: *     For each right-hand side, this array contains information about
        !           217: *     various error bounds and condition numbers corresponding to the
        !           218: *     componentwise relative error, which is defined as follows:
        !           219: *
        !           220: *     Componentwise relative error in the ith solution vector:
        !           221: *                    abs(XTRUE(j,i) - X(j,i))
        !           222: *             max_j ----------------------
        !           223: *                         abs(X(j,i))
        !           224: *
        !           225: *     The array is indexed by the right-hand side i (on which the
        !           226: *     componentwise relative error depends), and the type of error
        !           227: *     information as described below. There currently are up to three
        !           228: *     pieces of information returned for each right-hand side. If
        !           229: *     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           230: *     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           231: *     the first (:,N_ERR_BNDS) entries are returned.
        !           232: *
        !           233: *     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           234: *     right-hand side.
        !           235: *
        !           236: *     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           237: *     three fields:
        !           238: *     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           239: *              reciprocal condition number is less than the threshold
        !           240: *              sqrt(n) * dlamch('Epsilon').
        !           241: *
        !           242: *     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           243: *              almost certainly within a factor of 10 of the true error
        !           244: *              so long as the next entry is greater than the threshold
        !           245: *              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           246: *              be trusted if the previous boolean is true.
        !           247: *
        !           248: *     err = 3  Reciprocal condition number: Estimated componentwise
        !           249: *              reciprocal condition number.  Compared with the threshold
        !           250: *              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           251: *              estimate is "guaranteed". These reciprocal condition
        !           252: *              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           253: *              appropriately scaled matrix Z.
        !           254: *              Let Z = S*(A*diag(x)), where x is the solution for the
        !           255: *              current right-hand side and S scales each row of
        !           256: *              A*diag(x) by a power of the radix so all absolute row
        !           257: *              sums of Z are approximately 1.
        !           258: *
        !           259: *     See Lapack Working Note 165 for further details and extra
        !           260: *     cautions.
        !           261: *
        !           262: *     NPARAMS (input) INTEGER
        !           263: *     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           264: *     PARAMS array is never referenced and default values are used.
        !           265: *
        !           266: *     PARAMS  (input / output) DOUBLE PRECISION array, dimension NPARAMS
        !           267: *     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           268: *     that entry will be filled with default value used for that
        !           269: *     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           270: *     are used for higher-numbered parameters.
        !           271: *
        !           272: *       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           273: *            refinement or not.
        !           274: *         Default: 1.0D+0
        !           275: *            = 0.0 : No refinement is performed, and no error bounds are
        !           276: *                    computed.
        !           277: *            = 1.0 : Use the double-precision refinement algorithm,
        !           278: *                    possibly with doubled-single computations if the
        !           279: *                    compilation environment does not support DOUBLE
        !           280: *                    PRECISION.
        !           281: *              (other values are reserved for future use)
        !           282: *
        !           283: *       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           284: *            computations allowed for refinement.
        !           285: *         Default: 10
        !           286: *         Aggressive: Set to 100 to permit convergence using approximate
        !           287: *                     factorizations or factorizations other than LU. If
        !           288: *                     the factorization uses a technique other than
        !           289: *                     Gaussian elimination, the guarantees in
        !           290: *                     err_bnds_norm and err_bnds_comp may no longer be
        !           291: *                     trustworthy.
        !           292: *
        !           293: *       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           294: *            will attempt to find a solution with small componentwise
        !           295: *            relative error in the double-precision algorithm.  Positive
        !           296: *            is true, 0.0 is false.
        !           297: *         Default: 1.0 (attempt componentwise convergence)
        !           298: *
        !           299: *     WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           300: *
        !           301: *     RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
        !           302: *
        !           303: *     INFO    (output) INTEGER
        !           304: *       = 0:  Successful exit. The solution to every right-hand side is
        !           305: *         guaranteed.
        !           306: *       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           307: *       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           308: *         has been completed, but the factor U is exactly singular, so
        !           309: *         the solution and error bounds could not be computed. RCOND = 0
        !           310: *         is returned.
        !           311: *       = N+J: The solution corresponding to the Jth right-hand side is
        !           312: *         not guaranteed. The solutions corresponding to other right-
        !           313: *         hand sides K with K > J may not be guaranteed as well, but
        !           314: *         only the first such right-hand side is reported. If a small
        !           315: *         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           316: *         the Jth right-hand side is the first with a normwise error
        !           317: *         bound that is not guaranteed (the smallest J such
        !           318: *         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           319: *         the Jth right-hand side is the first with either a normwise or
        !           320: *         componentwise error bound that is not guaranteed (the smallest
        !           321: *         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           322: *         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           323: *         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           324: *         about all of the right-hand sides check ERR_BNDS_NORM or
        !           325: *         ERR_BNDS_COMP.
        !           326: *
        !           327: *     ==================================================================
        !           328: *
        !           329: *     .. Parameters ..
        !           330:       DOUBLE PRECISION   ZERO, ONE
        !           331:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           332:       DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
        !           333:       DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
        !           334:       DOUBLE PRECISION   DZTHRESH_DEFAULT
        !           335:       PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
        !           336:       PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
        !           337:       PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
        !           338:       PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
        !           339:       PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
        !           340:       INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
        !           341:      $                   LA_LINRX_CWISE_I
        !           342:       PARAMETER          ( LA_LINRX_ITREF_I = 1,
        !           343:      $                   LA_LINRX_ITHRESH_I = 2 )
        !           344:       PARAMETER          ( LA_LINRX_CWISE_I = 3 )
        !           345:       INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
        !           346:      $                   LA_LINRX_RCOND_I
        !           347:       PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
        !           348:       PARAMETER          ( LA_LINRX_RCOND_I = 3 )
        !           349: *     ..
        !           350: *     .. Local Scalars ..
        !           351:       CHARACTER(1)       NORM
        !           352:       LOGICAL            ROWEQU, COLEQU, NOTRAN, IGNORE_CWISE
        !           353:       INTEGER            J, TRANS_TYPE, PREC_TYPE, REF_TYPE, N_NORMS,
        !           354:      $                   ITHRESH
        !           355:       DOUBLE PRECISION   ANORM, RCOND_TMP, ILLRCOND_THRESH, ERR_LBND,
        !           356:      $                   CWISE_WRONG, RTHRESH, UNSTABLE_THRESH
        !           357: *     ..
        !           358: *     .. External Subroutines ..
        !           359:       EXTERNAL           XERBLA, ZGBCON, ZLA_GBRFSX_EXTENDED
        !           360: *     ..
        !           361: *     .. Intrinsic Functions ..
        !           362:       INTRINSIC          MAX, SQRT, TRANSFER
        !           363: *     ..
        !           364: *     .. External Functions ..
        !           365:       EXTERNAL           LSAME, BLAS_FPINFO_X, ILATRANS, ILAPREC
        !           366:       EXTERNAL           DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
        !           367:       DOUBLE PRECISION   DLAMCH, ZLANGB, ZLA_GBRCOND_X, ZLA_GBRCOND_C
        !           368:       LOGICAL            LSAME
        !           369:       INTEGER            BLAS_FPINFO_X
        !           370:       INTEGER            ILATRANS, ILAPREC
        !           371: *     ..
        !           372: *     .. Executable Statements ..
        !           373: *
        !           374: *     Check the input parameters.
        !           375: *
        !           376:       INFO = 0
        !           377:       TRANS_TYPE = ILATRANS( TRANS )
        !           378:       REF_TYPE = INT( ITREF_DEFAULT )
        !           379:       IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
        !           380:          IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
        !           381:             PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
        !           382:          ELSE
        !           383:             REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
        !           384:          END IF
        !           385:       END IF
        !           386: *
        !           387: *     Set default parameters.
        !           388: *
        !           389:       ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
        !           390:       ITHRESH = INT( ITHRESH_DEFAULT )
        !           391:       RTHRESH = RTHRESH_DEFAULT
        !           392:       UNSTABLE_THRESH = DZTHRESH_DEFAULT
        !           393:       IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
        !           394: *
        !           395:       IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
        !           396:          IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
        !           397:             PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
        !           398:          ELSE
        !           399:             ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
        !           400:          END IF
        !           401:       END IF
        !           402:       IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
        !           403:          IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
        !           404:             IF ( IGNORE_CWISE ) THEN
        !           405:                PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
        !           406:             ELSE
        !           407:                PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
        !           408:             END IF
        !           409:          ELSE
        !           410:             IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
        !           411:          END IF
        !           412:       END IF
        !           413:       IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
        !           414:          N_NORMS = 0
        !           415:       ELSE IF ( IGNORE_CWISE ) THEN
        !           416:          N_NORMS = 1
        !           417:       ELSE
        !           418:          N_NORMS = 2
        !           419:       END IF
        !           420: *
        !           421:       NOTRAN = LSAME( TRANS, 'N' )
        !           422:       ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
        !           423:       COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
        !           424: *
        !           425: *     Test input parameters.
        !           426: *
        !           427:       IF( TRANS_TYPE.EQ.-1 ) THEN
        !           428:         INFO = -1
        !           429:       ELSE IF( .NOT.ROWEQU .AND. .NOT.COLEQU .AND.
        !           430:      $         .NOT.LSAME( EQUED, 'N' ) ) THEN
        !           431:         INFO = -2
        !           432:       ELSE IF( N.LT.0 ) THEN
        !           433:         INFO = -3
        !           434:       ELSE IF( KL.LT.0 ) THEN
        !           435:         INFO = -4
        !           436:       ELSE IF( KU.LT.0 ) THEN
        !           437:         INFO = -5
        !           438:       ELSE IF( NRHS.LT.0 ) THEN
        !           439:         INFO = -6
        !           440:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
        !           441:         INFO = -8
        !           442:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
        !           443:         INFO = -10
        !           444:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           445:         INFO = -13
        !           446:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           447:         INFO = -15
        !           448:       END IF
        !           449:       IF( INFO.NE.0 ) THEN
        !           450:         CALL XERBLA( 'ZGBRFSX', -INFO )
        !           451:         RETURN
        !           452:       END IF
        !           453: *
        !           454: *     Quick return if possible.
        !           455: *
        !           456:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           457:          RCOND = 1.0D+0
        !           458:          DO J = 1, NRHS
        !           459:             BERR( J ) = 0.0D+0
        !           460:             IF ( N_ERR_BNDS .GE. 1 ) THEN
        !           461:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           462:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           463:             END IF
        !           464:             IF ( N_ERR_BNDS .GE. 2 ) THEN
        !           465:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
        !           466:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
        !           467:             END IF
        !           468:             IF ( N_ERR_BNDS .GE. 3 ) THEN
        !           469:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
        !           470:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
        !           471:             END IF
        !           472:          END DO
        !           473:          RETURN
        !           474:       END IF
        !           475: *
        !           476: *     Default to failure.
        !           477: *
        !           478:       RCOND = 0.0D+0
        !           479:       DO J = 1, NRHS
        !           480:          BERR( J ) = 1.0D+0
        !           481:          IF ( N_ERR_BNDS .GE. 1 ) THEN
        !           482:             ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           483:             ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           484:          END IF
        !           485:          IF ( N_ERR_BNDS .GE. 2 ) THEN
        !           486:             ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           487:             ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           488:          END IF
        !           489:          IF ( N_ERR_BNDS .GE. 3 ) THEN
        !           490:             ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
        !           491:             ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
        !           492:          END IF
        !           493:       END DO
        !           494: *
        !           495: *     Compute the norm of A and the reciprocal of the condition
        !           496: *     number of A.
        !           497: *
        !           498:       IF( NOTRAN ) THEN
        !           499:          NORM = 'I'
        !           500:       ELSE
        !           501:          NORM = '1'
        !           502:       END IF
        !           503:       ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
        !           504:       CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
        !           505:      $     WORK, RWORK, INFO )
        !           506: *
        !           507: *     Perform refinement on each right-hand side
        !           508: *
        !           509:       IF ( REF_TYPE .NE. 0 ) THEN
        !           510: 
        !           511:          PREC_TYPE = ILAPREC( 'E' )
        !           512: 
        !           513:          IF ( NOTRAN ) THEN
        !           514:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
        !           515:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, COLEQU, C, B,
        !           516:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
        !           517:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
        !           518:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
        !           519:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
        !           520:      $           INFO )
        !           521:          ELSE
        !           522:             CALL ZLA_GBRFSX_EXTENDED( PREC_TYPE, TRANS_TYPE,  N, KL, KU,
        !           523:      $           NRHS, AB, LDAB, AFB, LDAFB, IPIV, ROWEQU, R, B,
        !           524:      $           LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM,
        !           525:      $           ERR_BNDS_COMP, WORK, RWORK, WORK(N+1),
        !           526:      $           TRANSFER (RWORK(1:2*N), (/ (ZERO, ZERO) /), N),
        !           527:      $           RCOND, ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
        !           528:      $           INFO )
        !           529:          END IF
        !           530:       END IF
        !           531: 
        !           532:       ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
        !           533:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1) THEN
        !           534: *
        !           535: *     Compute scaled normwise condition number cond(A*C).
        !           536: *
        !           537:          IF ( COLEQU .AND. NOTRAN ) THEN
        !           538:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
        !           539:      $           LDAFB, IPIV, C, .TRUE., INFO, WORK, RWORK )
        !           540:          ELSE IF ( ROWEQU .AND. .NOT. NOTRAN ) THEN
        !           541:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
        !           542:      $           LDAFB, IPIV, R, .TRUE., INFO, WORK, RWORK )
        !           543:          ELSE
        !           544:             RCOND_TMP = ZLA_GBRCOND_C( TRANS, N, KL, KU, AB, LDAB, AFB,
        !           545:      $           LDAFB, IPIV, C, .FALSE., INFO, WORK, RWORK )
        !           546:          END IF
        !           547:          DO J = 1, NRHS
        !           548: *
        !           549: *     Cap the error at 1.0.
        !           550: *
        !           551:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
        !           552:      $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0)
        !           553:      $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           554: *
        !           555: *     Threshold the error (see LAWN).
        !           556: *
        !           557:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
        !           558:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           559:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
        !           560:                IF ( INFO .LE. N ) INFO = N + J
        !           561:             ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
        !           562:      $              THEN
        !           563:                ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
        !           564:                ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           565:             END IF
        !           566: *
        !           567: *     Save the condition number.
        !           568: *
        !           569:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
        !           570:                ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
        !           571:             END IF
        !           572: 
        !           573:          END DO
        !           574:       END IF
        !           575: 
        !           576:       IF (N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2) THEN
        !           577: *
        !           578: *     Compute componentwise condition number cond(A*diag(Y(:,J))) for
        !           579: *     each right-hand side using the current solution as an estimate of
        !           580: *     the true solution.  If the componentwise error estimate is too
        !           581: *     large, then the solution is a lousy estimate of truth and the
        !           582: *     estimated RCOND may be too optimistic.  To avoid misleading users,
        !           583: *     the inverse condition number is set to 0.0 when the estimated
        !           584: *     cwise error is at least CWISE_WRONG.
        !           585: *
        !           586:          CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
        !           587:          DO J = 1, NRHS
        !           588:             IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
        !           589:      $     THEN
        !           590:                RCOND_TMP = ZLA_GBRCOND_X( TRANS, N, KL, KU, AB, LDAB,
        !           591:      $              AFB, LDAFB, IPIV, X( 1, J ), INFO, WORK, RWORK )
        !           592:             ELSE
        !           593:                RCOND_TMP = 0.0D+0
        !           594:             END IF
        !           595: *
        !           596: *     Cap the error at 1.0.
        !           597: *
        !           598:             IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
        !           599:      $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
        !           600:      $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           601: *
        !           602: *     Threshold the error (see LAWN).
        !           603: *
        !           604:             IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
        !           605:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
        !           606:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
        !           607:                IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
        !           608:      $              .AND. INFO.LT.N + J ) INFO = N + J
        !           609:             ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
        !           610:      $              .LT. ERR_LBND ) THEN
        !           611:                ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
        !           612:                ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
        !           613:             END IF
        !           614: *
        !           615: *     Save the condition number.
        !           616: *
        !           617:             IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
        !           618:                ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
        !           619:             END IF
        !           620: 
        !           621:          END DO
        !           622:       END IF
        !           623: *
        !           624:       RETURN
        !           625: *
        !           626: *     End of ZGBRFSX
        !           627: *
        !           628:       END

CVSweb interface <joel.bertrand@systella.fr>