File:  [local] / rpl / lapack / lapack / zgbrfs.f
Revision 1.2: download - view: text, annotated - select for diffs - revision graph
Wed Apr 21 13:45:28 2010 UTC (14 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_17, rpl-4_0_16, rpl-4_0_15, HEAD
En route pour la 4.0.15 !

    1:       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
    2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          TRANS
   14:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IPIV( * )
   18:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
   19:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   20:      $                   WORK( * ), X( LDX, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  ZGBRFS improves the computed solution to a system of linear
   27: *  equations when the coefficient matrix is banded, and provides
   28: *  error bounds and backward error estimates for the solution.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  TRANS   (input) CHARACTER*1
   34: *          Specifies the form of the system of equations:
   35: *          = 'N':  A * X = B     (No transpose)
   36: *          = 'T':  A**T * X = B  (Transpose)
   37: *          = 'C':  A**H * X = B  (Conjugate transpose)
   38: *
   39: *  N       (input) INTEGER
   40: *          The order of the matrix A.  N >= 0.
   41: *
   42: *  KL      (input) INTEGER
   43: *          The number of subdiagonals within the band of A.  KL >= 0.
   44: *
   45: *  KU      (input) INTEGER
   46: *          The number of superdiagonals within the band of A.  KU >= 0.
   47: *
   48: *  NRHS    (input) INTEGER
   49: *          The number of right hand sides, i.e., the number of columns
   50: *          of the matrices B and X.  NRHS >= 0.
   51: *
   52: *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
   53: *          The original band matrix A, stored in rows 1 to KL+KU+1.
   54: *          The j-th column of A is stored in the j-th column of the
   55: *          array AB as follows:
   56: *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
   57: *
   58: *  LDAB    (input) INTEGER
   59: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
   60: *
   61: *  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
   62: *          Details of the LU factorization of the band matrix A, as
   63: *          computed by ZGBTRF.  U is stored as an upper triangular band
   64: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
   65: *          the multipliers used during the factorization are stored in
   66: *          rows KL+KU+2 to 2*KL+KU+1.
   67: *
   68: *  LDAFB   (input) INTEGER
   69: *          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
   70: *
   71: *  IPIV    (input) INTEGER array, dimension (N)
   72: *          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
   73: *          matrix was interchanged with row IPIV(i).
   74: *
   75: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
   76: *          The right hand side matrix B.
   77: *
   78: *  LDB     (input) INTEGER
   79: *          The leading dimension of the array B.  LDB >= max(1,N).
   80: *
   81: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
   82: *          On entry, the solution matrix X, as computed by ZGBTRS.
   83: *          On exit, the improved solution matrix X.
   84: *
   85: *  LDX     (input) INTEGER
   86: *          The leading dimension of the array X.  LDX >= max(1,N).
   87: *
   88: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   89: *          The estimated forward error bound for each solution vector
   90: *          X(j) (the j-th column of the solution matrix X).
   91: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   92: *          is an estimated upper bound for the magnitude of the largest
   93: *          element in (X(j) - XTRUE) divided by the magnitude of the
   94: *          largest element in X(j).  The estimate is as reliable as
   95: *          the estimate for RCOND, and is almost always a slight
   96: *          overestimate of the true error.
   97: *
   98: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   99: *          The componentwise relative backward error of each solution
  100: *          vector X(j) (i.e., the smallest relative change in
  101: *          any element of A or B that makes X(j) an exact solution).
  102: *
  103: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
  104: *
  105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
  106: *
  107: *  INFO    (output) INTEGER
  108: *          = 0:  successful exit
  109: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  110: *
  111: *  Internal Parameters
  112: *  ===================
  113: *
  114: *  ITMAX is the maximum number of steps of iterative refinement.
  115: *
  116: *  =====================================================================
  117: *
  118: *     .. Parameters ..
  119:       INTEGER            ITMAX
  120:       PARAMETER          ( ITMAX = 5 )
  121:       DOUBLE PRECISION   ZERO
  122:       PARAMETER          ( ZERO = 0.0D+0 )
  123:       COMPLEX*16         CONE
  124:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
  125:       DOUBLE PRECISION   TWO
  126:       PARAMETER          ( TWO = 2.0D+0 )
  127:       DOUBLE PRECISION   THREE
  128:       PARAMETER          ( THREE = 3.0D+0 )
  129: *     ..
  130: *     .. Local Scalars ..
  131:       LOGICAL            NOTRAN
  132:       CHARACTER          TRANSN, TRANST
  133:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
  134:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  135:       COMPLEX*16         ZDUM
  136: *     ..
  137: *     .. Local Arrays ..
  138:       INTEGER            ISAVE( 3 )
  139: *     ..
  140: *     .. External Subroutines ..
  141:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
  142: *     ..
  143: *     .. Intrinsic Functions ..
  144:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
  145: *     ..
  146: *     .. External Functions ..
  147:       LOGICAL            LSAME
  148:       DOUBLE PRECISION   DLAMCH
  149:       EXTERNAL           LSAME, DLAMCH
  150: *     ..
  151: *     .. Statement Functions ..
  152:       DOUBLE PRECISION   CABS1
  153: *     ..
  154: *     .. Statement Function definitions ..
  155:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  156: *     ..
  157: *     .. Executable Statements ..
  158: *
  159: *     Test the input parameters.
  160: *
  161:       INFO = 0
  162:       NOTRAN = LSAME( TRANS, 'N' )
  163:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  164:      $    LSAME( TRANS, 'C' ) ) THEN
  165:          INFO = -1
  166:       ELSE IF( N.LT.0 ) THEN
  167:          INFO = -2
  168:       ELSE IF( KL.LT.0 ) THEN
  169:          INFO = -3
  170:       ELSE IF( KU.LT.0 ) THEN
  171:          INFO = -4
  172:       ELSE IF( NRHS.LT.0 ) THEN
  173:          INFO = -5
  174:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  175:          INFO = -7
  176:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  177:          INFO = -9
  178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  179:          INFO = -12
  180:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  181:          INFO = -14
  182:       END IF
  183:       IF( INFO.NE.0 ) THEN
  184:          CALL XERBLA( 'ZGBRFS', -INFO )
  185:          RETURN
  186:       END IF
  187: *
  188: *     Quick return if possible
  189: *
  190:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  191:          DO 10 J = 1, NRHS
  192:             FERR( J ) = ZERO
  193:             BERR( J ) = ZERO
  194:    10    CONTINUE
  195:          RETURN
  196:       END IF
  197: *
  198:       IF( NOTRAN ) THEN
  199:          TRANSN = 'N'
  200:          TRANST = 'C'
  201:       ELSE
  202:          TRANSN = 'C'
  203:          TRANST = 'N'
  204:       END IF
  205: *
  206: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  207: *
  208:       NZ = MIN( KL+KU+2, N+1 )
  209:       EPS = DLAMCH( 'Epsilon' )
  210:       SAFMIN = DLAMCH( 'Safe minimum' )
  211:       SAFE1 = NZ*SAFMIN
  212:       SAFE2 = SAFE1 / EPS
  213: *
  214: *     Do for each right hand side
  215: *
  216:       DO 140 J = 1, NRHS
  217: *
  218:          COUNT = 1
  219:          LSTRES = THREE
  220:    20    CONTINUE
  221: *
  222: *        Loop until stopping criterion is satisfied.
  223: *
  224: *        Compute residual R = B - op(A) * X,
  225: *        where op(A) = A, A**T, or A**H, depending on TRANS.
  226: *
  227:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
  228:          CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
  229:      $               CONE, WORK, 1 )
  230: *
  231: *        Compute componentwise relative backward error from formula
  232: *
  233: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  234: *
  235: *        where abs(Z) is the componentwise absolute value of the matrix
  236: *        or vector Z.  If the i-th component of the denominator is less
  237: *        than SAFE2, then SAFE1 is added to the i-th components of the
  238: *        numerator and denominator before dividing.
  239: *
  240:          DO 30 I = 1, N
  241:             RWORK( I ) = CABS1( B( I, J ) )
  242:    30    CONTINUE
  243: *
  244: *        Compute abs(op(A))*abs(X) + abs(B).
  245: *
  246:          IF( NOTRAN ) THEN
  247:             DO 50 K = 1, N
  248:                KK = KU + 1 - K
  249:                XK = CABS1( X( K, J ) )
  250:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
  251:                   RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
  252:    40          CONTINUE
  253:    50       CONTINUE
  254:          ELSE
  255:             DO 70 K = 1, N
  256:                S = ZERO
  257:                KK = KU + 1 - K
  258:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
  259:                   S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
  260:    60          CONTINUE
  261:                RWORK( K ) = RWORK( K ) + S
  262:    70       CONTINUE
  263:          END IF
  264:          S = ZERO
  265:          DO 80 I = 1, N
  266:             IF( RWORK( I ).GT.SAFE2 ) THEN
  267:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
  268:             ELSE
  269:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
  270:      $             ( RWORK( I )+SAFE1 ) )
  271:             END IF
  272:    80    CONTINUE
  273:          BERR( J ) = S
  274: *
  275: *        Test stopping criterion. Continue iterating if
  276: *           1) The residual BERR(J) is larger than machine epsilon, and
  277: *           2) BERR(J) decreased by at least a factor of 2 during the
  278: *              last iteration, and
  279: *           3) At most ITMAX iterations tried.
  280: *
  281:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  282:      $       COUNT.LE.ITMAX ) THEN
  283: *
  284: *           Update solution and try again.
  285: *
  286:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
  287:      $                   INFO )
  288:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
  289:             LSTRES = BERR( J )
  290:             COUNT = COUNT + 1
  291:             GO TO 20
  292:          END IF
  293: *
  294: *        Bound error from formula
  295: *
  296: *        norm(X - XTRUE) / norm(X) .le. FERR =
  297: *        norm( abs(inv(op(A)))*
  298: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  299: *
  300: *        where
  301: *          norm(Z) is the magnitude of the largest component of Z
  302: *          inv(op(A)) is the inverse of op(A)
  303: *          abs(Z) is the componentwise absolute value of the matrix or
  304: *             vector Z
  305: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  306: *          EPS is machine epsilon
  307: *
  308: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  309: *        is incremented by SAFE1 if the i-th component of
  310: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  311: *
  312: *        Use ZLACN2 to estimate the infinity-norm of the matrix
  313: *           inv(op(A)) * diag(W),
  314: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  315: *
  316:          DO 90 I = 1, N
  317:             IF( RWORK( I ).GT.SAFE2 ) THEN
  318:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
  319:             ELSE
  320:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
  321:      $                      SAFE1
  322:             END IF
  323:    90    CONTINUE
  324: *
  325:          KASE = 0
  326:   100    CONTINUE
  327:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
  328:          IF( KASE.NE.0 ) THEN
  329:             IF( KASE.EQ.1 ) THEN
  330: *
  331: *              Multiply by diag(W)*inv(op(A)**H).
  332: *
  333:                CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
  334:      $                      WORK, N, INFO )
  335:                DO 110 I = 1, N
  336:                   WORK( I ) = RWORK( I )*WORK( I )
  337:   110          CONTINUE
  338:             ELSE
  339: *
  340: *              Multiply by inv(op(A))*diag(W).
  341: *
  342:                DO 120 I = 1, N
  343:                   WORK( I ) = RWORK( I )*WORK( I )
  344:   120          CONTINUE
  345:                CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
  346:      $                      WORK, N, INFO )
  347:             END IF
  348:             GO TO 100
  349:          END IF
  350: *
  351: *        Normalize error.
  352: *
  353:          LSTRES = ZERO
  354:          DO 130 I = 1, N
  355:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
  356:   130    CONTINUE
  357:          IF( LSTRES.NE.ZERO )
  358:      $      FERR( J ) = FERR( J ) / LSTRES
  359: *
  360:   140 CONTINUE
  361: *
  362:       RETURN
  363: *
  364: *     End of ZGBRFS
  365: *
  366:       END

CVSweb interface <joel.bertrand@systella.fr>