Annotation of rpl/lapack/lapack/zgbrfs.f, revision 1.8

1.8     ! bertrand    1: *> \brief \b ZGBRFS
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download ZGBRFS + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfs.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfs.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfs.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
        !            22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
        !            23: *                          INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          TRANS
        !            27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       INTEGER            IPIV( * )
        !            31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            32: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            33: *      $                   WORK( * ), X( LDX, * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> ZGBRFS improves the computed solution to a system of linear
        !            43: *> equations when the coefficient matrix is banded, and provides
        !            44: *> error bounds and backward error estimates for the solution.
        !            45: *> \endverbatim
        !            46: *
        !            47: *  Arguments:
        !            48: *  ==========
        !            49: *
        !            50: *> \param[in] TRANS
        !            51: *> \verbatim
        !            52: *>          TRANS is CHARACTER*1
        !            53: *>          Specifies the form of the system of equations:
        !            54: *>          = 'N':  A * X = B     (No transpose)
        !            55: *>          = 'T':  A**T * X = B  (Transpose)
        !            56: *>          = 'C':  A**H * X = B  (Conjugate transpose)
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in] N
        !            60: *> \verbatim
        !            61: *>          N is INTEGER
        !            62: *>          The order of the matrix A.  N >= 0.
        !            63: *> \endverbatim
        !            64: *>
        !            65: *> \param[in] KL
        !            66: *> \verbatim
        !            67: *>          KL is INTEGER
        !            68: *>          The number of subdiagonals within the band of A.  KL >= 0.
        !            69: *> \endverbatim
        !            70: *>
        !            71: *> \param[in] KU
        !            72: *> \verbatim
        !            73: *>          KU is INTEGER
        !            74: *>          The number of superdiagonals within the band of A.  KU >= 0.
        !            75: *> \endverbatim
        !            76: *>
        !            77: *> \param[in] NRHS
        !            78: *> \verbatim
        !            79: *>          NRHS is INTEGER
        !            80: *>          The number of right hand sides, i.e., the number of columns
        !            81: *>          of the matrices B and X.  NRHS >= 0.
        !            82: *> \endverbatim
        !            83: *>
        !            84: *> \param[in] AB
        !            85: *> \verbatim
        !            86: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
        !            87: *>          The original band matrix A, stored in rows 1 to KL+KU+1.
        !            88: *>          The j-th column of A is stored in the j-th column of the
        !            89: *>          array AB as follows:
        !            90: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !            91: *> \endverbatim
        !            92: *>
        !            93: *> \param[in] LDAB
        !            94: *> \verbatim
        !            95: *>          LDAB is INTEGER
        !            96: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] AFB
        !           100: *> \verbatim
        !           101: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
        !           102: *>          Details of the LU factorization of the band matrix A, as
        !           103: *>          computed by ZGBTRF.  U is stored as an upper triangular band
        !           104: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !           105: *>          the multipliers used during the factorization are stored in
        !           106: *>          rows KL+KU+2 to 2*KL+KU+1.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] LDAFB
        !           110: *> \verbatim
        !           111: *>          LDAFB is INTEGER
        !           112: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] IPIV
        !           116: *> \verbatim
        !           117: *>          IPIV is INTEGER array, dimension (N)
        !           118: *>          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
        !           119: *>          matrix was interchanged with row IPIV(i).
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] B
        !           123: *> \verbatim
        !           124: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
        !           125: *>          The right hand side matrix B.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] LDB
        !           129: *> \verbatim
        !           130: *>          LDB is INTEGER
        !           131: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           132: *> \endverbatim
        !           133: *>
        !           134: *> \param[in,out] X
        !           135: *> \verbatim
        !           136: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
        !           137: *>          On entry, the solution matrix X, as computed by ZGBTRS.
        !           138: *>          On exit, the improved solution matrix X.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] LDX
        !           142: *> \verbatim
        !           143: *>          LDX is INTEGER
        !           144: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           145: *> \endverbatim
        !           146: *>
        !           147: *> \param[out] FERR
        !           148: *> \verbatim
        !           149: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           150: *>          The estimated forward error bound for each solution vector
        !           151: *>          X(j) (the j-th column of the solution matrix X).
        !           152: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           153: *>          is an estimated upper bound for the magnitude of the largest
        !           154: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           155: *>          largest element in X(j).  The estimate is as reliable as
        !           156: *>          the estimate for RCOND, and is almost always a slight
        !           157: *>          overestimate of the true error.
        !           158: *> \endverbatim
        !           159: *>
        !           160: *> \param[out] BERR
        !           161: *> \verbatim
        !           162: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           163: *>          The componentwise relative backward error of each solution
        !           164: *>          vector X(j) (i.e., the smallest relative change in
        !           165: *>          any element of A or B that makes X(j) an exact solution).
        !           166: *> \endverbatim
        !           167: *>
        !           168: *> \param[out] WORK
        !           169: *> \verbatim
        !           170: *>          WORK is COMPLEX*16 array, dimension (2*N)
        !           171: *> \endverbatim
        !           172: *>
        !           173: *> \param[out] RWORK
        !           174: *> \verbatim
        !           175: *>          RWORK is DOUBLE PRECISION array, dimension (N)
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[out] INFO
        !           179: *> \verbatim
        !           180: *>          INFO is INTEGER
        !           181: *>          = 0:  successful exit
        !           182: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           183: *> \endverbatim
        !           184: *
        !           185: *> \par Internal Parameters:
        !           186: *  =========================
        !           187: *>
        !           188: *> \verbatim
        !           189: *>  ITMAX is the maximum number of steps of iterative refinement.
        !           190: *> \endverbatim
        !           191: *
        !           192: *  Authors:
        !           193: *  ========
        !           194: *
        !           195: *> \author Univ. of Tennessee 
        !           196: *> \author Univ. of California Berkeley 
        !           197: *> \author Univ. of Colorado Denver 
        !           198: *> \author NAG Ltd. 
        !           199: *
        !           200: *> \date November 2011
        !           201: *
        !           202: *> \ingroup complex16GBcomputational
        !           203: *
        !           204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                    206:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                    207:      $                   INFO )
                    208: *
1.8     ! bertrand  209: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  210: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    211: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  212: *     November 2011
1.1       bertrand  213: *
                    214: *     .. Scalar Arguments ..
                    215:       CHARACTER          TRANS
                    216:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    217: *     ..
                    218: *     .. Array Arguments ..
                    219:       INTEGER            IPIV( * )
                    220:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    221:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    222:      $                   WORK( * ), X( LDX, * )
                    223: *     ..
                    224: *
                    225: *  =====================================================================
                    226: *
                    227: *     .. Parameters ..
                    228:       INTEGER            ITMAX
                    229:       PARAMETER          ( ITMAX = 5 )
                    230:       DOUBLE PRECISION   ZERO
                    231:       PARAMETER          ( ZERO = 0.0D+0 )
                    232:       COMPLEX*16         CONE
                    233:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    234:       DOUBLE PRECISION   TWO
                    235:       PARAMETER          ( TWO = 2.0D+0 )
                    236:       DOUBLE PRECISION   THREE
                    237:       PARAMETER          ( THREE = 3.0D+0 )
                    238: *     ..
                    239: *     .. Local Scalars ..
                    240:       LOGICAL            NOTRAN
                    241:       CHARACTER          TRANSN, TRANST
                    242:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
                    243:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    244:       COMPLEX*16         ZDUM
                    245: *     ..
                    246: *     .. Local Arrays ..
                    247:       INTEGER            ISAVE( 3 )
                    248: *     ..
                    249: *     .. External Subroutines ..
                    250:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
                    251: *     ..
                    252: *     .. Intrinsic Functions ..
                    253:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    254: *     ..
                    255: *     .. External Functions ..
                    256:       LOGICAL            LSAME
                    257:       DOUBLE PRECISION   DLAMCH
                    258:       EXTERNAL           LSAME, DLAMCH
                    259: *     ..
                    260: *     .. Statement Functions ..
                    261:       DOUBLE PRECISION   CABS1
                    262: *     ..
                    263: *     .. Statement Function definitions ..
                    264:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    265: *     ..
                    266: *     .. Executable Statements ..
                    267: *
                    268: *     Test the input parameters.
                    269: *
                    270:       INFO = 0
                    271:       NOTRAN = LSAME( TRANS, 'N' )
                    272:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    273:      $    LSAME( TRANS, 'C' ) ) THEN
                    274:          INFO = -1
                    275:       ELSE IF( N.LT.0 ) THEN
                    276:          INFO = -2
                    277:       ELSE IF( KL.LT.0 ) THEN
                    278:          INFO = -3
                    279:       ELSE IF( KU.LT.0 ) THEN
                    280:          INFO = -4
                    281:       ELSE IF( NRHS.LT.0 ) THEN
                    282:          INFO = -5
                    283:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    284:          INFO = -7
                    285:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    286:          INFO = -9
                    287:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    288:          INFO = -12
                    289:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    290:          INFO = -14
                    291:       END IF
                    292:       IF( INFO.NE.0 ) THEN
                    293:          CALL XERBLA( 'ZGBRFS', -INFO )
                    294:          RETURN
                    295:       END IF
                    296: *
                    297: *     Quick return if possible
                    298: *
                    299:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    300:          DO 10 J = 1, NRHS
                    301:             FERR( J ) = ZERO
                    302:             BERR( J ) = ZERO
                    303:    10    CONTINUE
                    304:          RETURN
                    305:       END IF
                    306: *
                    307:       IF( NOTRAN ) THEN
                    308:          TRANSN = 'N'
                    309:          TRANST = 'C'
                    310:       ELSE
                    311:          TRANSN = 'C'
                    312:          TRANST = 'N'
                    313:       END IF
                    314: *
                    315: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    316: *
                    317:       NZ = MIN( KL+KU+2, N+1 )
                    318:       EPS = DLAMCH( 'Epsilon' )
                    319:       SAFMIN = DLAMCH( 'Safe minimum' )
                    320:       SAFE1 = NZ*SAFMIN
                    321:       SAFE2 = SAFE1 / EPS
                    322: *
                    323: *     Do for each right hand side
                    324: *
                    325:       DO 140 J = 1, NRHS
                    326: *
                    327:          COUNT = 1
                    328:          LSTRES = THREE
                    329:    20    CONTINUE
                    330: *
                    331: *        Loop until stopping criterion is satisfied.
                    332: *
                    333: *        Compute residual R = B - op(A) * X,
                    334: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    335: *
                    336:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    337:          CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
                    338:      $               CONE, WORK, 1 )
                    339: *
                    340: *        Compute componentwise relative backward error from formula
                    341: *
                    342: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    343: *
                    344: *        where abs(Z) is the componentwise absolute value of the matrix
                    345: *        or vector Z.  If the i-th component of the denominator is less
                    346: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    347: *        numerator and denominator before dividing.
                    348: *
                    349:          DO 30 I = 1, N
                    350:             RWORK( I ) = CABS1( B( I, J ) )
                    351:    30    CONTINUE
                    352: *
                    353: *        Compute abs(op(A))*abs(X) + abs(B).
                    354: *
                    355:          IF( NOTRAN ) THEN
                    356:             DO 50 K = 1, N
                    357:                KK = KU + 1 - K
                    358:                XK = CABS1( X( K, J ) )
                    359:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    360:                   RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
                    361:    40          CONTINUE
                    362:    50       CONTINUE
                    363:          ELSE
                    364:             DO 70 K = 1, N
                    365:                S = ZERO
                    366:                KK = KU + 1 - K
                    367:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    368:                   S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
                    369:    60          CONTINUE
                    370:                RWORK( K ) = RWORK( K ) + S
                    371:    70       CONTINUE
                    372:          END IF
                    373:          S = ZERO
                    374:          DO 80 I = 1, N
                    375:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    376:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    377:             ELSE
                    378:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    379:      $             ( RWORK( I )+SAFE1 ) )
                    380:             END IF
                    381:    80    CONTINUE
                    382:          BERR( J ) = S
                    383: *
                    384: *        Test stopping criterion. Continue iterating if
                    385: *           1) The residual BERR(J) is larger than machine epsilon, and
                    386: *           2) BERR(J) decreased by at least a factor of 2 during the
                    387: *              last iteration, and
                    388: *           3) At most ITMAX iterations tried.
                    389: *
                    390:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    391:      $       COUNT.LE.ITMAX ) THEN
                    392: *
                    393: *           Update solution and try again.
                    394: *
                    395:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
                    396:      $                   INFO )
                    397:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
                    398:             LSTRES = BERR( J )
                    399:             COUNT = COUNT + 1
                    400:             GO TO 20
                    401:          END IF
                    402: *
                    403: *        Bound error from formula
                    404: *
                    405: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    406: *        norm( abs(inv(op(A)))*
                    407: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    408: *
                    409: *        where
                    410: *          norm(Z) is the magnitude of the largest component of Z
                    411: *          inv(op(A)) is the inverse of op(A)
                    412: *          abs(Z) is the componentwise absolute value of the matrix or
                    413: *             vector Z
                    414: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    415: *          EPS is machine epsilon
                    416: *
                    417: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    418: *        is incremented by SAFE1 if the i-th component of
                    419: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    420: *
                    421: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    422: *           inv(op(A)) * diag(W),
                    423: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    424: *
                    425:          DO 90 I = 1, N
                    426:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    427:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    428:             ELSE
                    429:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    430:      $                      SAFE1
                    431:             END IF
                    432:    90    CONTINUE
                    433: *
                    434:          KASE = 0
                    435:   100    CONTINUE
                    436:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    437:          IF( KASE.NE.0 ) THEN
                    438:             IF( KASE.EQ.1 ) THEN
                    439: *
                    440: *              Multiply by diag(W)*inv(op(A)**H).
                    441: *
                    442:                CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    443:      $                      WORK, N, INFO )
                    444:                DO 110 I = 1, N
                    445:                   WORK( I ) = RWORK( I )*WORK( I )
                    446:   110          CONTINUE
                    447:             ELSE
                    448: *
                    449: *              Multiply by inv(op(A))*diag(W).
                    450: *
                    451:                DO 120 I = 1, N
                    452:                   WORK( I ) = RWORK( I )*WORK( I )
                    453:   120          CONTINUE
                    454:                CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    455:      $                      WORK, N, INFO )
                    456:             END IF
                    457:             GO TO 100
                    458:          END IF
                    459: *
                    460: *        Normalize error.
                    461: *
                    462:          LSTRES = ZERO
                    463:          DO 130 I = 1, N
                    464:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    465:   130    CONTINUE
                    466:          IF( LSTRES.NE.ZERO )
                    467:      $      FERR( J ) = FERR( J ) / LSTRES
                    468: *
                    469:   140 CONTINUE
                    470: *
                    471:       RETURN
                    472: *
                    473: *     End of ZGBRFS
                    474: *
                    475:       END

CVSweb interface <joel.bertrand@systella.fr>