Annotation of rpl/lapack/lapack/zgbrfs.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                      2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                      3:      $                   INFO )
                      4: *
                      5: *  -- LAPACK routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
                     11: *
                     12: *     .. Scalar Arguments ..
                     13:       CHARACTER          TRANS
                     14:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                     15: *     ..
                     16: *     .. Array Arguments ..
                     17:       INTEGER            IPIV( * )
                     18:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     19:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     20:      $                   WORK( * ), X( LDX, * )
                     21: *     ..
                     22: *
                     23: *  Purpose
                     24: *  =======
                     25: *
                     26: *  ZGBRFS improves the computed solution to a system of linear
                     27: *  equations when the coefficient matrix is banded, and provides
                     28: *  error bounds and backward error estimates for the solution.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  TRANS   (input) CHARACTER*1
                     34: *          Specifies the form of the system of equations:
                     35: *          = 'N':  A * X = B     (No transpose)
                     36: *          = 'T':  A**T * X = B  (Transpose)
                     37: *          = 'C':  A**H * X = B  (Conjugate transpose)
                     38: *
                     39: *  N       (input) INTEGER
                     40: *          The order of the matrix A.  N >= 0.
                     41: *
                     42: *  KL      (input) INTEGER
                     43: *          The number of subdiagonals within the band of A.  KL >= 0.
                     44: *
                     45: *  KU      (input) INTEGER
                     46: *          The number of superdiagonals within the band of A.  KU >= 0.
                     47: *
                     48: *  NRHS    (input) INTEGER
                     49: *          The number of right hand sides, i.e., the number of columns
                     50: *          of the matrices B and X.  NRHS >= 0.
                     51: *
                     52: *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
                     53: *          The original band matrix A, stored in rows 1 to KL+KU+1.
                     54: *          The j-th column of A is stored in the j-th column of the
                     55: *          array AB as follows:
                     56: *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
                     57: *
                     58: *  LDAB    (input) INTEGER
                     59: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                     60: *
                     61: *  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
                     62: *          Details of the LU factorization of the band matrix A, as
                     63: *          computed by ZGBTRF.  U is stored as an upper triangular band
                     64: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                     65: *          the multipliers used during the factorization are stored in
                     66: *          rows KL+KU+2 to 2*KL+KU+1.
                     67: *
                     68: *  LDAFB   (input) INTEGER
                     69: *          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
                     70: *
                     71: *  IPIV    (input) INTEGER array, dimension (N)
                     72: *          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
                     73: *          matrix was interchanged with row IPIV(i).
                     74: *
                     75: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     76: *          The right hand side matrix B.
                     77: *
                     78: *  LDB     (input) INTEGER
                     79: *          The leading dimension of the array B.  LDB >= max(1,N).
                     80: *
                     81: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
                     82: *          On entry, the solution matrix X, as computed by ZGBTRS.
                     83: *          On exit, the improved solution matrix X.
                     84: *
                     85: *  LDX     (input) INTEGER
                     86: *          The leading dimension of the array X.  LDX >= max(1,N).
                     87: *
                     88: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     89: *          The estimated forward error bound for each solution vector
                     90: *          X(j) (the j-th column of the solution matrix X).
                     91: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
                     92: *          is an estimated upper bound for the magnitude of the largest
                     93: *          element in (X(j) - XTRUE) divided by the magnitude of the
                     94: *          largest element in X(j).  The estimate is as reliable as
                     95: *          the estimate for RCOND, and is almost always a slight
                     96: *          overestimate of the true error.
                     97: *
                     98: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
                     99: *          The componentwise relative backward error of each solution
                    100: *          vector X(j) (i.e., the smallest relative change in
                    101: *          any element of A or B that makes X(j) an exact solution).
                    102: *
                    103: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
                    104: *
                    105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    106: *
                    107: *  INFO    (output) INTEGER
                    108: *          = 0:  successful exit
                    109: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    110: *
                    111: *  Internal Parameters
                    112: *  ===================
                    113: *
                    114: *  ITMAX is the maximum number of steps of iterative refinement.
                    115: *
                    116: *  =====================================================================
                    117: *
                    118: *     .. Parameters ..
                    119:       INTEGER            ITMAX
                    120:       PARAMETER          ( ITMAX = 5 )
                    121:       DOUBLE PRECISION   ZERO
                    122:       PARAMETER          ( ZERO = 0.0D+0 )
                    123:       COMPLEX*16         CONE
                    124:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    125:       DOUBLE PRECISION   TWO
                    126:       PARAMETER          ( TWO = 2.0D+0 )
                    127:       DOUBLE PRECISION   THREE
                    128:       PARAMETER          ( THREE = 3.0D+0 )
                    129: *     ..
                    130: *     .. Local Scalars ..
                    131:       LOGICAL            NOTRAN
                    132:       CHARACTER          TRANSN, TRANST
                    133:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
                    134:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    135:       COMPLEX*16         ZDUM
                    136: *     ..
                    137: *     .. Local Arrays ..
                    138:       INTEGER            ISAVE( 3 )
                    139: *     ..
                    140: *     .. External Subroutines ..
                    141:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
                    142: *     ..
                    143: *     .. Intrinsic Functions ..
                    144:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    145: *     ..
                    146: *     .. External Functions ..
                    147:       LOGICAL            LSAME
                    148:       DOUBLE PRECISION   DLAMCH
                    149:       EXTERNAL           LSAME, DLAMCH
                    150: *     ..
                    151: *     .. Statement Functions ..
                    152:       DOUBLE PRECISION   CABS1
                    153: *     ..
                    154: *     .. Statement Function definitions ..
                    155:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    156: *     ..
                    157: *     .. Executable Statements ..
                    158: *
                    159: *     Test the input parameters.
                    160: *
                    161:       INFO = 0
                    162:       NOTRAN = LSAME( TRANS, 'N' )
                    163:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    164:      $    LSAME( TRANS, 'C' ) ) THEN
                    165:          INFO = -1
                    166:       ELSE IF( N.LT.0 ) THEN
                    167:          INFO = -2
                    168:       ELSE IF( KL.LT.0 ) THEN
                    169:          INFO = -3
                    170:       ELSE IF( KU.LT.0 ) THEN
                    171:          INFO = -4
                    172:       ELSE IF( NRHS.LT.0 ) THEN
                    173:          INFO = -5
                    174:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    175:          INFO = -7
                    176:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    177:          INFO = -9
                    178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -12
                    180:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    181:          INFO = -14
                    182:       END IF
                    183:       IF( INFO.NE.0 ) THEN
                    184:          CALL XERBLA( 'ZGBRFS', -INFO )
                    185:          RETURN
                    186:       END IF
                    187: *
                    188: *     Quick return if possible
                    189: *
                    190:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    191:          DO 10 J = 1, NRHS
                    192:             FERR( J ) = ZERO
                    193:             BERR( J ) = ZERO
                    194:    10    CONTINUE
                    195:          RETURN
                    196:       END IF
                    197: *
                    198:       IF( NOTRAN ) THEN
                    199:          TRANSN = 'N'
                    200:          TRANST = 'C'
                    201:       ELSE
                    202:          TRANSN = 'C'
                    203:          TRANST = 'N'
                    204:       END IF
                    205: *
                    206: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    207: *
                    208:       NZ = MIN( KL+KU+2, N+1 )
                    209:       EPS = DLAMCH( 'Epsilon' )
                    210:       SAFMIN = DLAMCH( 'Safe minimum' )
                    211:       SAFE1 = NZ*SAFMIN
                    212:       SAFE2 = SAFE1 / EPS
                    213: *
                    214: *     Do for each right hand side
                    215: *
                    216:       DO 140 J = 1, NRHS
                    217: *
                    218:          COUNT = 1
                    219:          LSTRES = THREE
                    220:    20    CONTINUE
                    221: *
                    222: *        Loop until stopping criterion is satisfied.
                    223: *
                    224: *        Compute residual R = B - op(A) * X,
                    225: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    226: *
                    227:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    228:          CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
                    229:      $               CONE, WORK, 1 )
                    230: *
                    231: *        Compute componentwise relative backward error from formula
                    232: *
                    233: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    234: *
                    235: *        where abs(Z) is the componentwise absolute value of the matrix
                    236: *        or vector Z.  If the i-th component of the denominator is less
                    237: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    238: *        numerator and denominator before dividing.
                    239: *
                    240:          DO 30 I = 1, N
                    241:             RWORK( I ) = CABS1( B( I, J ) )
                    242:    30    CONTINUE
                    243: *
                    244: *        Compute abs(op(A))*abs(X) + abs(B).
                    245: *
                    246:          IF( NOTRAN ) THEN
                    247:             DO 50 K = 1, N
                    248:                KK = KU + 1 - K
                    249:                XK = CABS1( X( K, J ) )
                    250:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    251:                   RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
                    252:    40          CONTINUE
                    253:    50       CONTINUE
                    254:          ELSE
                    255:             DO 70 K = 1, N
                    256:                S = ZERO
                    257:                KK = KU + 1 - K
                    258:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    259:                   S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
                    260:    60          CONTINUE
                    261:                RWORK( K ) = RWORK( K ) + S
                    262:    70       CONTINUE
                    263:          END IF
                    264:          S = ZERO
                    265:          DO 80 I = 1, N
                    266:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    267:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    268:             ELSE
                    269:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    270:      $             ( RWORK( I )+SAFE1 ) )
                    271:             END IF
                    272:    80    CONTINUE
                    273:          BERR( J ) = S
                    274: *
                    275: *        Test stopping criterion. Continue iterating if
                    276: *           1) The residual BERR(J) is larger than machine epsilon, and
                    277: *           2) BERR(J) decreased by at least a factor of 2 during the
                    278: *              last iteration, and
                    279: *           3) At most ITMAX iterations tried.
                    280: *
                    281:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    282:      $       COUNT.LE.ITMAX ) THEN
                    283: *
                    284: *           Update solution and try again.
                    285: *
                    286:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
                    287:      $                   INFO )
                    288:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
                    289:             LSTRES = BERR( J )
                    290:             COUNT = COUNT + 1
                    291:             GO TO 20
                    292:          END IF
                    293: *
                    294: *        Bound error from formula
                    295: *
                    296: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    297: *        norm( abs(inv(op(A)))*
                    298: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    299: *
                    300: *        where
                    301: *          norm(Z) is the magnitude of the largest component of Z
                    302: *          inv(op(A)) is the inverse of op(A)
                    303: *          abs(Z) is the componentwise absolute value of the matrix or
                    304: *             vector Z
                    305: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    306: *          EPS is machine epsilon
                    307: *
                    308: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    309: *        is incremented by SAFE1 if the i-th component of
                    310: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    311: *
                    312: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    313: *           inv(op(A)) * diag(W),
                    314: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    315: *
                    316:          DO 90 I = 1, N
                    317:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    318:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    319:             ELSE
                    320:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    321:      $                      SAFE1
                    322:             END IF
                    323:    90    CONTINUE
                    324: *
                    325:          KASE = 0
                    326:   100    CONTINUE
                    327:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    328:          IF( KASE.NE.0 ) THEN
                    329:             IF( KASE.EQ.1 ) THEN
                    330: *
                    331: *              Multiply by diag(W)*inv(op(A)**H).
                    332: *
                    333:                CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    334:      $                      WORK, N, INFO )
                    335:                DO 110 I = 1, N
                    336:                   WORK( I ) = RWORK( I )*WORK( I )
                    337:   110          CONTINUE
                    338:             ELSE
                    339: *
                    340: *              Multiply by inv(op(A))*diag(W).
                    341: *
                    342:                DO 120 I = 1, N
                    343:                   WORK( I ) = RWORK( I )*WORK( I )
                    344:   120          CONTINUE
                    345:                CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    346:      $                      WORK, N, INFO )
                    347:             END IF
                    348:             GO TO 100
                    349:          END IF
                    350: *
                    351: *        Normalize error.
                    352: *
                    353:          LSTRES = ZERO
                    354:          DO 130 I = 1, N
                    355:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    356:   130    CONTINUE
                    357:          IF( LSTRES.NE.ZERO )
                    358:      $      FERR( J ) = FERR( J ) / LSTRES
                    359: *
                    360:   140 CONTINUE
                    361: *
                    362:       RETURN
                    363: *
                    364: *     End of ZGBRFS
                    365: *
                    366:       END

CVSweb interface <joel.bertrand@systella.fr>