Annotation of rpl/lapack/lapack/zgbrfs.f, revision 1.17

1.8       bertrand    1: *> \brief \b ZGBRFS
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download ZGBRFS + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbrfs.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbrfs.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbrfs.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                     22: *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                     23: *                          INFO )
1.14      bertrand   24: *
1.8       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          TRANS
                     27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       INTEGER            IPIV( * )
                     31: *       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                     32: *       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     33: *      $                   WORK( * ), X( LDX, * )
                     34: *       ..
1.14      bertrand   35: *
1.8       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> ZGBRFS improves the computed solution to a system of linear
                     43: *> equations when the coefficient matrix is banded, and provides
                     44: *> error bounds and backward error estimates for the solution.
                     45: *> \endverbatim
                     46: *
                     47: *  Arguments:
                     48: *  ==========
                     49: *
                     50: *> \param[in] TRANS
                     51: *> \verbatim
                     52: *>          TRANS is CHARACTER*1
                     53: *>          Specifies the form of the system of equations:
                     54: *>          = 'N':  A * X = B     (No transpose)
                     55: *>          = 'T':  A**T * X = B  (Transpose)
                     56: *>          = 'C':  A**H * X = B  (Conjugate transpose)
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] N
                     60: *> \verbatim
                     61: *>          N is INTEGER
                     62: *>          The order of the matrix A.  N >= 0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] KL
                     66: *> \verbatim
                     67: *>          KL is INTEGER
                     68: *>          The number of subdiagonals within the band of A.  KL >= 0.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] KU
                     72: *> \verbatim
                     73: *>          KU is INTEGER
                     74: *>          The number of superdiagonals within the band of A.  KU >= 0.
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[in] NRHS
                     78: *> \verbatim
                     79: *>          NRHS is INTEGER
                     80: *>          The number of right hand sides, i.e., the number of columns
                     81: *>          of the matrices B and X.  NRHS >= 0.
                     82: *> \endverbatim
                     83: *>
                     84: *> \param[in] AB
                     85: *> \verbatim
                     86: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
                     87: *>          The original band matrix A, stored in rows 1 to KL+KU+1.
                     88: *>          The j-th column of A is stored in the j-th column of the
                     89: *>          array AB as follows:
                     90: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
                     91: *> \endverbatim
                     92: *>
                     93: *> \param[in] LDAB
                     94: *> \verbatim
                     95: *>          LDAB is INTEGER
                     96: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] AFB
                    100: *> \verbatim
                    101: *>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
                    102: *>          Details of the LU factorization of the band matrix A, as
                    103: *>          computed by ZGBTRF.  U is stored as an upper triangular band
                    104: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
                    105: *>          the multipliers used during the factorization are stored in
                    106: *>          rows KL+KU+2 to 2*KL+KU+1.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] LDAFB
                    110: *> \verbatim
                    111: *>          LDAFB is INTEGER
                    112: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] IPIV
                    116: *> \verbatim
                    117: *>          IPIV is INTEGER array, dimension (N)
                    118: *>          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
                    119: *>          matrix was interchanged with row IPIV(i).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] B
                    123: *> \verbatim
                    124: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    125: *>          The right hand side matrix B.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDB
                    129: *> \verbatim
                    130: *>          LDB is INTEGER
                    131: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in,out] X
                    135: *> \verbatim
                    136: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    137: *>          On entry, the solution matrix X, as computed by ZGBTRS.
                    138: *>          On exit, the improved solution matrix X.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] LDX
                    142: *> \verbatim
                    143: *>          LDX is INTEGER
                    144: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] FERR
                    148: *> \verbatim
                    149: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    150: *>          The estimated forward error bound for each solution vector
                    151: *>          X(j) (the j-th column of the solution matrix X).
                    152: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    153: *>          is an estimated upper bound for the magnitude of the largest
                    154: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    155: *>          largest element in X(j).  The estimate is as reliable as
                    156: *>          the estimate for RCOND, and is almost always a slight
                    157: *>          overestimate of the true error.
                    158: *> \endverbatim
                    159: *>
                    160: *> \param[out] BERR
                    161: *> \verbatim
                    162: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    163: *>          The componentwise relative backward error of each solution
                    164: *>          vector X(j) (i.e., the smallest relative change in
                    165: *>          any element of A or B that makes X(j) an exact solution).
                    166: *> \endverbatim
                    167: *>
                    168: *> \param[out] WORK
                    169: *> \verbatim
                    170: *>          WORK is COMPLEX*16 array, dimension (2*N)
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[out] RWORK
                    174: *> \verbatim
                    175: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] INFO
                    179: *> \verbatim
                    180: *>          INFO is INTEGER
                    181: *>          = 0:  successful exit
                    182: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    183: *> \endverbatim
                    184: *
                    185: *> \par Internal Parameters:
                    186: *  =========================
                    187: *>
                    188: *> \verbatim
                    189: *>  ITMAX is the maximum number of steps of iterative refinement.
                    190: *> \endverbatim
                    191: *
                    192: *  Authors:
                    193: *  ========
                    194: *
1.14      bertrand  195: *> \author Univ. of Tennessee
                    196: *> \author Univ. of California Berkeley
                    197: *> \author Univ. of Colorado Denver
                    198: *> \author NAG Ltd.
1.8       bertrand  199: *
                    200: *> \ingroup complex16GBcomputational
                    201: *
                    202: *  =====================================================================
1.1       bertrand  203:       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                    204:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
                    205:      $                   INFO )
                    206: *
1.17    ! bertrand  207: *  -- LAPACK computational routine --
1.1       bertrand  208: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    209: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    210: *
                    211: *     .. Scalar Arguments ..
                    212:       CHARACTER          TRANS
                    213:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    214: *     ..
                    215: *     .. Array Arguments ..
                    216:       INTEGER            IPIV( * )
                    217:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
                    218:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    219:      $                   WORK( * ), X( LDX, * )
                    220: *     ..
                    221: *
                    222: *  =====================================================================
                    223: *
                    224: *     .. Parameters ..
                    225:       INTEGER            ITMAX
                    226:       PARAMETER          ( ITMAX = 5 )
                    227:       DOUBLE PRECISION   ZERO
                    228:       PARAMETER          ( ZERO = 0.0D+0 )
                    229:       COMPLEX*16         CONE
                    230:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
                    231:       DOUBLE PRECISION   TWO
                    232:       PARAMETER          ( TWO = 2.0D+0 )
                    233:       DOUBLE PRECISION   THREE
                    234:       PARAMETER          ( THREE = 3.0D+0 )
                    235: *     ..
                    236: *     .. Local Scalars ..
                    237:       LOGICAL            NOTRAN
                    238:       CHARACTER          TRANSN, TRANST
                    239:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
                    240:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
                    241:       COMPLEX*16         ZDUM
                    242: *     ..
                    243: *     .. Local Arrays ..
                    244:       INTEGER            ISAVE( 3 )
                    245: *     ..
                    246: *     .. External Subroutines ..
                    247:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
                    248: *     ..
                    249: *     .. Intrinsic Functions ..
                    250:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
                    251: *     ..
                    252: *     .. External Functions ..
                    253:       LOGICAL            LSAME
                    254:       DOUBLE PRECISION   DLAMCH
                    255:       EXTERNAL           LSAME, DLAMCH
                    256: *     ..
                    257: *     .. Statement Functions ..
                    258:       DOUBLE PRECISION   CABS1
                    259: *     ..
                    260: *     .. Statement Function definitions ..
                    261:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    262: *     ..
                    263: *     .. Executable Statements ..
                    264: *
                    265: *     Test the input parameters.
                    266: *
                    267:       INFO = 0
                    268:       NOTRAN = LSAME( TRANS, 'N' )
                    269:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    270:      $    LSAME( TRANS, 'C' ) ) THEN
                    271:          INFO = -1
                    272:       ELSE IF( N.LT.0 ) THEN
                    273:          INFO = -2
                    274:       ELSE IF( KL.LT.0 ) THEN
                    275:          INFO = -3
                    276:       ELSE IF( KU.LT.0 ) THEN
                    277:          INFO = -4
                    278:       ELSE IF( NRHS.LT.0 ) THEN
                    279:          INFO = -5
                    280:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    281:          INFO = -7
                    282:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    283:          INFO = -9
                    284:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    285:          INFO = -12
                    286:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    287:          INFO = -14
                    288:       END IF
                    289:       IF( INFO.NE.0 ) THEN
                    290:          CALL XERBLA( 'ZGBRFS', -INFO )
                    291:          RETURN
                    292:       END IF
                    293: *
                    294: *     Quick return if possible
                    295: *
                    296:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    297:          DO 10 J = 1, NRHS
                    298:             FERR( J ) = ZERO
                    299:             BERR( J ) = ZERO
                    300:    10    CONTINUE
                    301:          RETURN
                    302:       END IF
                    303: *
                    304:       IF( NOTRAN ) THEN
                    305:          TRANSN = 'N'
                    306:          TRANST = 'C'
                    307:       ELSE
                    308:          TRANSN = 'C'
                    309:          TRANST = 'N'
                    310:       END IF
                    311: *
                    312: *     NZ = maximum number of nonzero elements in each row of A, plus 1
                    313: *
                    314:       NZ = MIN( KL+KU+2, N+1 )
                    315:       EPS = DLAMCH( 'Epsilon' )
                    316:       SAFMIN = DLAMCH( 'Safe minimum' )
                    317:       SAFE1 = NZ*SAFMIN
                    318:       SAFE2 = SAFE1 / EPS
                    319: *
                    320: *     Do for each right hand side
                    321: *
                    322:       DO 140 J = 1, NRHS
                    323: *
                    324:          COUNT = 1
                    325:          LSTRES = THREE
                    326:    20    CONTINUE
                    327: *
                    328: *        Loop until stopping criterion is satisfied.
                    329: *
                    330: *        Compute residual R = B - op(A) * X,
                    331: *        where op(A) = A, A**T, or A**H, depending on TRANS.
                    332: *
                    333:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
                    334:          CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
                    335:      $               CONE, WORK, 1 )
                    336: *
                    337: *        Compute componentwise relative backward error from formula
                    338: *
                    339: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
                    340: *
                    341: *        where abs(Z) is the componentwise absolute value of the matrix
                    342: *        or vector Z.  If the i-th component of the denominator is less
                    343: *        than SAFE2, then SAFE1 is added to the i-th components of the
                    344: *        numerator and denominator before dividing.
                    345: *
                    346:          DO 30 I = 1, N
                    347:             RWORK( I ) = CABS1( B( I, J ) )
                    348:    30    CONTINUE
                    349: *
                    350: *        Compute abs(op(A))*abs(X) + abs(B).
                    351: *
                    352:          IF( NOTRAN ) THEN
                    353:             DO 50 K = 1, N
                    354:                KK = KU + 1 - K
                    355:                XK = CABS1( X( K, J ) )
                    356:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    357:                   RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
                    358:    40          CONTINUE
                    359:    50       CONTINUE
                    360:          ELSE
                    361:             DO 70 K = 1, N
                    362:                S = ZERO
                    363:                KK = KU + 1 - K
                    364:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
                    365:                   S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
                    366:    60          CONTINUE
                    367:                RWORK( K ) = RWORK( K ) + S
                    368:    70       CONTINUE
                    369:          END IF
                    370:          S = ZERO
                    371:          DO 80 I = 1, N
                    372:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    373:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
                    374:             ELSE
                    375:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
                    376:      $             ( RWORK( I )+SAFE1 ) )
                    377:             END IF
                    378:    80    CONTINUE
                    379:          BERR( J ) = S
                    380: *
                    381: *        Test stopping criterion. Continue iterating if
                    382: *           1) The residual BERR(J) is larger than machine epsilon, and
                    383: *           2) BERR(J) decreased by at least a factor of 2 during the
                    384: *              last iteration, and
                    385: *           3) At most ITMAX iterations tried.
                    386: *
                    387:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
                    388:      $       COUNT.LE.ITMAX ) THEN
                    389: *
                    390: *           Update solution and try again.
                    391: *
                    392:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
                    393:      $                   INFO )
                    394:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
                    395:             LSTRES = BERR( J )
                    396:             COUNT = COUNT + 1
                    397:             GO TO 20
                    398:          END IF
                    399: *
                    400: *        Bound error from formula
                    401: *
                    402: *        norm(X - XTRUE) / norm(X) .le. FERR =
                    403: *        norm( abs(inv(op(A)))*
                    404: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
                    405: *
                    406: *        where
                    407: *          norm(Z) is the magnitude of the largest component of Z
                    408: *          inv(op(A)) is the inverse of op(A)
                    409: *          abs(Z) is the componentwise absolute value of the matrix or
                    410: *             vector Z
                    411: *          NZ is the maximum number of nonzeros in any row of A, plus 1
                    412: *          EPS is machine epsilon
                    413: *
                    414: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
                    415: *        is incremented by SAFE1 if the i-th component of
                    416: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
                    417: *
                    418: *        Use ZLACN2 to estimate the infinity-norm of the matrix
                    419: *           inv(op(A)) * diag(W),
                    420: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
                    421: *
                    422:          DO 90 I = 1, N
                    423:             IF( RWORK( I ).GT.SAFE2 ) THEN
                    424:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
                    425:             ELSE
                    426:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
                    427:      $                      SAFE1
                    428:             END IF
                    429:    90    CONTINUE
                    430: *
                    431:          KASE = 0
                    432:   100    CONTINUE
                    433:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
                    434:          IF( KASE.NE.0 ) THEN
                    435:             IF( KASE.EQ.1 ) THEN
                    436: *
                    437: *              Multiply by diag(W)*inv(op(A)**H).
                    438: *
                    439:                CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    440:      $                      WORK, N, INFO )
                    441:                DO 110 I = 1, N
                    442:                   WORK( I ) = RWORK( I )*WORK( I )
                    443:   110          CONTINUE
                    444:             ELSE
                    445: *
                    446: *              Multiply by inv(op(A))*diag(W).
                    447: *
                    448:                DO 120 I = 1, N
                    449:                   WORK( I ) = RWORK( I )*WORK( I )
                    450:   120          CONTINUE
                    451:                CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
                    452:      $                      WORK, N, INFO )
                    453:             END IF
                    454:             GO TO 100
                    455:          END IF
                    456: *
                    457: *        Normalize error.
                    458: *
                    459:          LSTRES = ZERO
                    460:          DO 130 I = 1, N
                    461:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
                    462:   130    CONTINUE
                    463:          IF( LSTRES.NE.ZERO )
                    464:      $      FERR( J ) = FERR( J ) / LSTRES
                    465: *
                    466:   140 CONTINUE
                    467: *
                    468:       RETURN
                    469: *
                    470: *     End of ZGBRFS
                    471: *
                    472:       END

CVSweb interface <joel.bertrand@systella.fr>