Annotation of rpl/lapack/lapack/zgbrfs.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
        !             2:      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK,
        !             3:      $                   INFO )
        !             4: *
        !             5: *  -- LAPACK routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
        !            11: *
        !            12: *     .. Scalar Arguments ..
        !            13:       CHARACTER          TRANS
        !            14:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            15: *     ..
        !            16: *     .. Array Arguments ..
        !            17:       INTEGER            IPIV( * )
        !            18:       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * )
        !            19:       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            20:      $                   WORK( * ), X( LDX, * )
        !            21: *     ..
        !            22: *
        !            23: *  Purpose
        !            24: *  =======
        !            25: *
        !            26: *  ZGBRFS improves the computed solution to a system of linear
        !            27: *  equations when the coefficient matrix is banded, and provides
        !            28: *  error bounds and backward error estimates for the solution.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  TRANS   (input) CHARACTER*1
        !            34: *          Specifies the form of the system of equations:
        !            35: *          = 'N':  A * X = B     (No transpose)
        !            36: *          = 'T':  A**T * X = B  (Transpose)
        !            37: *          = 'C':  A**H * X = B  (Conjugate transpose)
        !            38: *
        !            39: *  N       (input) INTEGER
        !            40: *          The order of the matrix A.  N >= 0.
        !            41: *
        !            42: *  KL      (input) INTEGER
        !            43: *          The number of subdiagonals within the band of A.  KL >= 0.
        !            44: *
        !            45: *  KU      (input) INTEGER
        !            46: *          The number of superdiagonals within the band of A.  KU >= 0.
        !            47: *
        !            48: *  NRHS    (input) INTEGER
        !            49: *          The number of right hand sides, i.e., the number of columns
        !            50: *          of the matrices B and X.  NRHS >= 0.
        !            51: *
        !            52: *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
        !            53: *          The original band matrix A, stored in rows 1 to KL+KU+1.
        !            54: *          The j-th column of A is stored in the j-th column of the
        !            55: *          array AB as follows:
        !            56: *          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
        !            57: *
        !            58: *  LDAB    (input) INTEGER
        !            59: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !            60: *
        !            61: *  AFB     (input) COMPLEX*16 array, dimension (LDAFB,N)
        !            62: *          Details of the LU factorization of the band matrix A, as
        !            63: *          computed by ZGBTRF.  U is stored as an upper triangular band
        !            64: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
        !            65: *          the multipliers used during the factorization are stored in
        !            66: *          rows KL+KU+2 to 2*KL+KU+1.
        !            67: *
        !            68: *  LDAFB   (input) INTEGER
        !            69: *          The leading dimension of the array AFB.  LDAFB >= 2*KL*KU+1.
        !            70: *
        !            71: *  IPIV    (input) INTEGER array, dimension (N)
        !            72: *          The pivot indices from ZGBTRF; for 1<=i<=N, row i of the
        !            73: *          matrix was interchanged with row IPIV(i).
        !            74: *
        !            75: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !            76: *          The right hand side matrix B.
        !            77: *
        !            78: *  LDB     (input) INTEGER
        !            79: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            80: *
        !            81: *  X       (input/output) COMPLEX*16 array, dimension (LDX,NRHS)
        !            82: *          On entry, the solution matrix X, as computed by ZGBTRS.
        !            83: *          On exit, the improved solution matrix X.
        !            84: *
        !            85: *  LDX     (input) INTEGER
        !            86: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            87: *
        !            88: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            89: *          The estimated forward error bound for each solution vector
        !            90: *          X(j) (the j-th column of the solution matrix X).
        !            91: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !            92: *          is an estimated upper bound for the magnitude of the largest
        !            93: *          element in (X(j) - XTRUE) divided by the magnitude of the
        !            94: *          largest element in X(j).  The estimate is as reliable as
        !            95: *          the estimate for RCOND, and is almost always a slight
        !            96: *          overestimate of the true error.
        !            97: *
        !            98: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
        !            99: *          The componentwise relative backward error of each solution
        !           100: *          vector X(j) (i.e., the smallest relative change in
        !           101: *          any element of A or B that makes X(j) an exact solution).
        !           102: *
        !           103: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
        !           104: *
        !           105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           106: *
        !           107: *  INFO    (output) INTEGER
        !           108: *          = 0:  successful exit
        !           109: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           110: *
        !           111: *  Internal Parameters
        !           112: *  ===================
        !           113: *
        !           114: *  ITMAX is the maximum number of steps of iterative refinement.
        !           115: *
        !           116: *  =====================================================================
        !           117: *
        !           118: *     .. Parameters ..
        !           119:       INTEGER            ITMAX
        !           120:       PARAMETER          ( ITMAX = 5 )
        !           121:       DOUBLE PRECISION   ZERO
        !           122:       PARAMETER          ( ZERO = 0.0D+0 )
        !           123:       COMPLEX*16         CONE
        !           124:       PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
        !           125:       DOUBLE PRECISION   TWO
        !           126:       PARAMETER          ( TWO = 2.0D+0 )
        !           127:       DOUBLE PRECISION   THREE
        !           128:       PARAMETER          ( THREE = 3.0D+0 )
        !           129: *     ..
        !           130: *     .. Local Scalars ..
        !           131:       LOGICAL            NOTRAN
        !           132:       CHARACTER          TRANSN, TRANST
        !           133:       INTEGER            COUNT, I, J, K, KASE, KK, NZ
        !           134:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
        !           135:       COMPLEX*16         ZDUM
        !           136: *     ..
        !           137: *     .. Local Arrays ..
        !           138:       INTEGER            ISAVE( 3 )
        !           139: *     ..
        !           140: *     .. External Subroutines ..
        !           141:       EXTERNAL           XERBLA, ZAXPY, ZCOPY, ZGBMV, ZGBTRS, ZLACN2
        !           142: *     ..
        !           143: *     .. Intrinsic Functions ..
        !           144:       INTRINSIC          ABS, DBLE, DIMAG, MAX, MIN
        !           145: *     ..
        !           146: *     .. External Functions ..
        !           147:       LOGICAL            LSAME
        !           148:       DOUBLE PRECISION   DLAMCH
        !           149:       EXTERNAL           LSAME, DLAMCH
        !           150: *     ..
        !           151: *     .. Statement Functions ..
        !           152:       DOUBLE PRECISION   CABS1
        !           153: *     ..
        !           154: *     .. Statement Function definitions ..
        !           155:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
        !           156: *     ..
        !           157: *     .. Executable Statements ..
        !           158: *
        !           159: *     Test the input parameters.
        !           160: *
        !           161:       INFO = 0
        !           162:       NOTRAN = LSAME( TRANS, 'N' )
        !           163:       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
        !           164:      $    LSAME( TRANS, 'C' ) ) THEN
        !           165:          INFO = -1
        !           166:       ELSE IF( N.LT.0 ) THEN
        !           167:          INFO = -2
        !           168:       ELSE IF( KL.LT.0 ) THEN
        !           169:          INFO = -3
        !           170:       ELSE IF( KU.LT.0 ) THEN
        !           171:          INFO = -4
        !           172:       ELSE IF( NRHS.LT.0 ) THEN
        !           173:          INFO = -5
        !           174:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
        !           175:          INFO = -7
        !           176:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
        !           177:          INFO = -9
        !           178:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           179:          INFO = -12
        !           180:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           181:          INFO = -14
        !           182:       END IF
        !           183:       IF( INFO.NE.0 ) THEN
        !           184:          CALL XERBLA( 'ZGBRFS', -INFO )
        !           185:          RETURN
        !           186:       END IF
        !           187: *
        !           188: *     Quick return if possible
        !           189: *
        !           190:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           191:          DO 10 J = 1, NRHS
        !           192:             FERR( J ) = ZERO
        !           193:             BERR( J ) = ZERO
        !           194:    10    CONTINUE
        !           195:          RETURN
        !           196:       END IF
        !           197: *
        !           198:       IF( NOTRAN ) THEN
        !           199:          TRANSN = 'N'
        !           200:          TRANST = 'C'
        !           201:       ELSE
        !           202:          TRANSN = 'C'
        !           203:          TRANST = 'N'
        !           204:       END IF
        !           205: *
        !           206: *     NZ = maximum number of nonzero elements in each row of A, plus 1
        !           207: *
        !           208:       NZ = MIN( KL+KU+2, N+1 )
        !           209:       EPS = DLAMCH( 'Epsilon' )
        !           210:       SAFMIN = DLAMCH( 'Safe minimum' )
        !           211:       SAFE1 = NZ*SAFMIN
        !           212:       SAFE2 = SAFE1 / EPS
        !           213: *
        !           214: *     Do for each right hand side
        !           215: *
        !           216:       DO 140 J = 1, NRHS
        !           217: *
        !           218:          COUNT = 1
        !           219:          LSTRES = THREE
        !           220:    20    CONTINUE
        !           221: *
        !           222: *        Loop until stopping criterion is satisfied.
        !           223: *
        !           224: *        Compute residual R = B - op(A) * X,
        !           225: *        where op(A) = A, A**T, or A**H, depending on TRANS.
        !           226: *
        !           227:          CALL ZCOPY( N, B( 1, J ), 1, WORK, 1 )
        !           228:          CALL ZGBMV( TRANS, N, N, KL, KU, -CONE, AB, LDAB, X( 1, J ), 1,
        !           229:      $               CONE, WORK, 1 )
        !           230: *
        !           231: *        Compute componentwise relative backward error from formula
        !           232: *
        !           233: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
        !           234: *
        !           235: *        where abs(Z) is the componentwise absolute value of the matrix
        !           236: *        or vector Z.  If the i-th component of the denominator is less
        !           237: *        than SAFE2, then SAFE1 is added to the i-th components of the
        !           238: *        numerator and denominator before dividing.
        !           239: *
        !           240:          DO 30 I = 1, N
        !           241:             RWORK( I ) = CABS1( B( I, J ) )
        !           242:    30    CONTINUE
        !           243: *
        !           244: *        Compute abs(op(A))*abs(X) + abs(B).
        !           245: *
        !           246:          IF( NOTRAN ) THEN
        !           247:             DO 50 K = 1, N
        !           248:                KK = KU + 1 - K
        !           249:                XK = CABS1( X( K, J ) )
        !           250:                DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
        !           251:                   RWORK( I ) = RWORK( I ) + CABS1( AB( KK+I, K ) )*XK
        !           252:    40          CONTINUE
        !           253:    50       CONTINUE
        !           254:          ELSE
        !           255:             DO 70 K = 1, N
        !           256:                S = ZERO
        !           257:                KK = KU + 1 - K
        !           258:                DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
        !           259:                   S = S + CABS1( AB( KK+I, K ) )*CABS1( X( I, J ) )
        !           260:    60          CONTINUE
        !           261:                RWORK( K ) = RWORK( K ) + S
        !           262:    70       CONTINUE
        !           263:          END IF
        !           264:          S = ZERO
        !           265:          DO 80 I = 1, N
        !           266:             IF( RWORK( I ).GT.SAFE2 ) THEN
        !           267:                S = MAX( S, CABS1( WORK( I ) ) / RWORK( I ) )
        !           268:             ELSE
        !           269:                S = MAX( S, ( CABS1( WORK( I ) )+SAFE1 ) /
        !           270:      $             ( RWORK( I )+SAFE1 ) )
        !           271:             END IF
        !           272:    80    CONTINUE
        !           273:          BERR( J ) = S
        !           274: *
        !           275: *        Test stopping criterion. Continue iterating if
        !           276: *           1) The residual BERR(J) is larger than machine epsilon, and
        !           277: *           2) BERR(J) decreased by at least a factor of 2 during the
        !           278: *              last iteration, and
        !           279: *           3) At most ITMAX iterations tried.
        !           280: *
        !           281:          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
        !           282:      $       COUNT.LE.ITMAX ) THEN
        !           283: *
        !           284: *           Update solution and try again.
        !           285: *
        !           286:             CALL ZGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV, WORK, N,
        !           287:      $                   INFO )
        !           288:             CALL ZAXPY( N, CONE, WORK, 1, X( 1, J ), 1 )
        !           289:             LSTRES = BERR( J )
        !           290:             COUNT = COUNT + 1
        !           291:             GO TO 20
        !           292:          END IF
        !           293: *
        !           294: *        Bound error from formula
        !           295: *
        !           296: *        norm(X - XTRUE) / norm(X) .le. FERR =
        !           297: *        norm( abs(inv(op(A)))*
        !           298: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
        !           299: *
        !           300: *        where
        !           301: *          norm(Z) is the magnitude of the largest component of Z
        !           302: *          inv(op(A)) is the inverse of op(A)
        !           303: *          abs(Z) is the componentwise absolute value of the matrix or
        !           304: *             vector Z
        !           305: *          NZ is the maximum number of nonzeros in any row of A, plus 1
        !           306: *          EPS is machine epsilon
        !           307: *
        !           308: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
        !           309: *        is incremented by SAFE1 if the i-th component of
        !           310: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
        !           311: *
        !           312: *        Use ZLACN2 to estimate the infinity-norm of the matrix
        !           313: *           inv(op(A)) * diag(W),
        !           314: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
        !           315: *
        !           316:          DO 90 I = 1, N
        !           317:             IF( RWORK( I ).GT.SAFE2 ) THEN
        !           318:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I )
        !           319:             ELSE
        !           320:                RWORK( I ) = CABS1( WORK( I ) ) + NZ*EPS*RWORK( I ) +
        !           321:      $                      SAFE1
        !           322:             END IF
        !           323:    90    CONTINUE
        !           324: *
        !           325:          KASE = 0
        !           326:   100    CONTINUE
        !           327:          CALL ZLACN2( N, WORK( N+1 ), WORK, FERR( J ), KASE, ISAVE )
        !           328:          IF( KASE.NE.0 ) THEN
        !           329:             IF( KASE.EQ.1 ) THEN
        !           330: *
        !           331: *              Multiply by diag(W)*inv(op(A)**H).
        !           332: *
        !           333:                CALL ZGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
        !           334:      $                      WORK, N, INFO )
        !           335:                DO 110 I = 1, N
        !           336:                   WORK( I ) = RWORK( I )*WORK( I )
        !           337:   110          CONTINUE
        !           338:             ELSE
        !           339: *
        !           340: *              Multiply by inv(op(A))*diag(W).
        !           341: *
        !           342:                DO 120 I = 1, N
        !           343:                   WORK( I ) = RWORK( I )*WORK( I )
        !           344:   120          CONTINUE
        !           345:                CALL ZGBTRS( TRANSN, N, KL, KU, 1, AFB, LDAFB, IPIV,
        !           346:      $                      WORK, N, INFO )
        !           347:             END IF
        !           348:             GO TO 100
        !           349:          END IF
        !           350: *
        !           351: *        Normalize error.
        !           352: *
        !           353:          LSTRES = ZERO
        !           354:          DO 130 I = 1, N
        !           355:             LSTRES = MAX( LSTRES, CABS1( X( I, J ) ) )
        !           356:   130    CONTINUE
        !           357:          IF( LSTRES.NE.ZERO )
        !           358:      $      FERR( J ) = FERR( J ) / LSTRES
        !           359: *
        !           360:   140 CONTINUE
        !           361: *
        !           362:       RETURN
        !           363: *
        !           364: *     End of ZGBRFS
        !           365: *
        !           366:       END

CVSweb interface <joel.bertrand@systella.fr>