File:  [local] / rpl / lapack / lapack / zgbcon.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:42 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE ZGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
    2:      $                   WORK, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          NORM
   13:       INTEGER            INFO, KL, KU, LDAB, N
   14:       DOUBLE PRECISION   ANORM, RCOND
   15: *     ..
   16: *     .. Array Arguments ..
   17:       INTEGER            IPIV( * )
   18:       DOUBLE PRECISION   RWORK( * )
   19:       COMPLEX*16         AB( LDAB, * ), WORK( * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  ZGBCON estimates the reciprocal of the condition number of a complex
   26: *  general band matrix A, in either the 1-norm or the infinity-norm,
   27: *  using the LU factorization computed by ZGBTRF.
   28: *
   29: *  An estimate is obtained for norm(inv(A)), and the reciprocal of the
   30: *  condition number is computed as
   31: *     RCOND = 1 / ( norm(A) * norm(inv(A)) ).
   32: *
   33: *  Arguments
   34: *  =========
   35: *
   36: *  NORM    (input) CHARACTER*1
   37: *          Specifies whether the 1-norm condition number or the
   38: *          infinity-norm condition number is required:
   39: *          = '1' or 'O':  1-norm;
   40: *          = 'I':         Infinity-norm.
   41: *
   42: *  N       (input) INTEGER
   43: *          The order of the matrix A.  N >= 0.
   44: *
   45: *  KL      (input) INTEGER
   46: *          The number of subdiagonals within the band of A.  KL >= 0.
   47: *
   48: *  KU      (input) INTEGER
   49: *          The number of superdiagonals within the band of A.  KU >= 0.
   50: *
   51: *  AB      (input) COMPLEX*16 array, dimension (LDAB,N)
   52: *          Details of the LU factorization of the band matrix A, as
   53: *          computed by ZGBTRF.  U is stored as an upper triangular band
   54: *          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
   55: *          the multipliers used during the factorization are stored in
   56: *          rows KL+KU+2 to 2*KL+KU+1.
   57: *
   58: *  LDAB    (input) INTEGER
   59: *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
   60: *
   61: *  IPIV    (input) INTEGER array, dimension (N)
   62: *          The pivot indices; for 1 <= i <= N, row i of the matrix was
   63: *          interchanged with row IPIV(i).
   64: *
   65: *  ANORM   (input) DOUBLE PRECISION
   66: *          If NORM = '1' or 'O', the 1-norm of the original matrix A.
   67: *          If NORM = 'I', the infinity-norm of the original matrix A.
   68: *
   69: *  RCOND   (output) DOUBLE PRECISION
   70: *          The reciprocal of the condition number of the matrix A,
   71: *          computed as RCOND = 1/(norm(A) * norm(inv(A))).
   72: *
   73: *  WORK    (workspace) COMPLEX*16 array, dimension (2*N)
   74: *
   75: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
   76: *
   77: *  INFO    (output) INTEGER
   78: *          = 0:  successful exit
   79: *          < 0: if INFO = -i, the i-th argument had an illegal value
   80: *
   81: *  =====================================================================
   82: *
   83: *     .. Parameters ..
   84:       DOUBLE PRECISION   ONE, ZERO
   85:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   86: *     ..
   87: *     .. Local Scalars ..
   88:       LOGICAL            LNOTI, ONENRM
   89:       CHARACTER          NORMIN
   90:       INTEGER            IX, J, JP, KASE, KASE1, KD, LM
   91:       DOUBLE PRECISION   AINVNM, SCALE, SMLNUM
   92:       COMPLEX*16         T, ZDUM
   93: *     ..
   94: *     .. Local Arrays ..
   95:       INTEGER            ISAVE( 3 )
   96: *     ..
   97: *     .. External Functions ..
   98:       LOGICAL            LSAME
   99:       INTEGER            IZAMAX
  100:       DOUBLE PRECISION   DLAMCH
  101:       COMPLEX*16         ZDOTC
  102:       EXTERNAL           LSAME, IZAMAX, DLAMCH, ZDOTC
  103: *     ..
  104: *     .. External Subroutines ..
  105:       EXTERNAL           XERBLA, ZAXPY, ZDRSCL, ZLACN2, ZLATBS
  106: *     ..
  107: *     .. Intrinsic Functions ..
  108:       INTRINSIC          ABS, DBLE, DIMAG, MIN
  109: *     ..
  110: *     .. Statement Functions ..
  111:       DOUBLE PRECISION   CABS1
  112: *     ..
  113: *     .. Statement Function definitions ..
  114:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  115: *     ..
  116: *     .. Executable Statements ..
  117: *
  118: *     Test the input parameters.
  119: *
  120:       INFO = 0
  121:       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
  122:       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
  123:          INFO = -1
  124:       ELSE IF( N.LT.0 ) THEN
  125:          INFO = -2
  126:       ELSE IF( KL.LT.0 ) THEN
  127:          INFO = -3
  128:       ELSE IF( KU.LT.0 ) THEN
  129:          INFO = -4
  130:       ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
  131:          INFO = -6
  132:       ELSE IF( ANORM.LT.ZERO ) THEN
  133:          INFO = -8
  134:       END IF
  135:       IF( INFO.NE.0 ) THEN
  136:          CALL XERBLA( 'ZGBCON', -INFO )
  137:          RETURN
  138:       END IF
  139: *
  140: *     Quick return if possible
  141: *
  142:       RCOND = ZERO
  143:       IF( N.EQ.0 ) THEN
  144:          RCOND = ONE
  145:          RETURN
  146:       ELSE IF( ANORM.EQ.ZERO ) THEN
  147:          RETURN
  148:       END IF
  149: *
  150:       SMLNUM = DLAMCH( 'Safe minimum' )
  151: *
  152: *     Estimate the norm of inv(A).
  153: *
  154:       AINVNM = ZERO
  155:       NORMIN = 'N'
  156:       IF( ONENRM ) THEN
  157:          KASE1 = 1
  158:       ELSE
  159:          KASE1 = 2
  160:       END IF
  161:       KD = KL + KU + 1
  162:       LNOTI = KL.GT.0
  163:       KASE = 0
  164:    10 CONTINUE
  165:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  166:       IF( KASE.NE.0 ) THEN
  167:          IF( KASE.EQ.KASE1 ) THEN
  168: *
  169: *           Multiply by inv(L).
  170: *
  171:             IF( LNOTI ) THEN
  172:                DO 20 J = 1, N - 1
  173:                   LM = MIN( KL, N-J )
  174:                   JP = IPIV( J )
  175:                   T = WORK( JP )
  176:                   IF( JP.NE.J ) THEN
  177:                      WORK( JP ) = WORK( J )
  178:                      WORK( J ) = T
  179:                   END IF
  180:                   CALL ZAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
  181:    20          CONTINUE
  182:             END IF
  183: *
  184: *           Multiply by inv(U).
  185: *
  186:             CALL ZLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
  187:      $                   KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO )
  188:          ELSE
  189: *
  190: *           Multiply by inv(U').
  191: *
  192:             CALL ZLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
  193:      $                   NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK,
  194:      $                   INFO )
  195: *
  196: *           Multiply by inv(L').
  197: *
  198:             IF( LNOTI ) THEN
  199:                DO 30 J = N - 1, 1, -1
  200:                   LM = MIN( KL, N-J )
  201:                   WORK( J ) = WORK( J ) - ZDOTC( LM, AB( KD+1, J ), 1,
  202:      $                        WORK( J+1 ), 1 )
  203:                   JP = IPIV( J )
  204:                   IF( JP.NE.J ) THEN
  205:                      T = WORK( JP )
  206:                      WORK( JP ) = WORK( J )
  207:                      WORK( J ) = T
  208:                   END IF
  209:    30          CONTINUE
  210:             END IF
  211:          END IF
  212: *
  213: *        Divide X by 1/SCALE if doing so will not cause overflow.
  214: *
  215:          NORMIN = 'Y'
  216:          IF( SCALE.NE.ONE ) THEN
  217:             IX = IZAMAX( N, WORK, 1 )
  218:             IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
  219:      $         GO TO 40
  220:             CALL ZDRSCL( N, SCALE, WORK, 1 )
  221:          END IF
  222:          GO TO 10
  223:       END IF
  224: *
  225: *     Compute the estimate of the reciprocal condition number.
  226: *
  227:       IF( AINVNM.NE.ZERO )
  228:      $   RCOND = ( ONE / AINVNM ) / ANORM
  229: *
  230:    40 CONTINUE
  231:       RETURN
  232: *
  233: *     End of ZGBCON
  234: *
  235:       END

CVSweb interface <joel.bertrand@systella.fr>