File:  [local] / rpl / lapack / lapack / zgbcon.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGBCON
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGBCON + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbcon.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbcon.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbcon.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
   22: *                          WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          NORM
   26: *       INTEGER            INFO, KL, KU, LDAB, N
   27: *       DOUBLE PRECISION   ANORM, RCOND
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       INTEGER            IPIV( * )
   31: *       DOUBLE PRECISION   RWORK( * )
   32: *       COMPLEX*16         AB( LDAB, * ), WORK( * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZGBCON estimates the reciprocal of the condition number of a complex
   42: *> general band matrix A, in either the 1-norm or the infinity-norm,
   43: *> using the LU factorization computed by ZGBTRF.
   44: *>
   45: *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
   46: *> condition number is computed as
   47: *>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
   48: *> \endverbatim
   49: *
   50: *  Arguments:
   51: *  ==========
   52: *
   53: *> \param[in] NORM
   54: *> \verbatim
   55: *>          NORM is CHARACTER*1
   56: *>          Specifies whether the 1-norm condition number or the
   57: *>          infinity-norm condition number is required:
   58: *>          = '1' or 'O':  1-norm;
   59: *>          = 'I':         Infinity-norm.
   60: *> \endverbatim
   61: *>
   62: *> \param[in] N
   63: *> \verbatim
   64: *>          N is INTEGER
   65: *>          The order of the matrix A.  N >= 0.
   66: *> \endverbatim
   67: *>
   68: *> \param[in] KL
   69: *> \verbatim
   70: *>          KL is INTEGER
   71: *>          The number of subdiagonals within the band of A.  KL >= 0.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] KU
   75: *> \verbatim
   76: *>          KU is INTEGER
   77: *>          The number of superdiagonals within the band of A.  KU >= 0.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] AB
   81: *> \verbatim
   82: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   83: *>          Details of the LU factorization of the band matrix A, as
   84: *>          computed by ZGBTRF.  U is stored as an upper triangular band
   85: *>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
   86: *>          the multipliers used during the factorization are stored in
   87: *>          rows KL+KU+2 to 2*KL+KU+1.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] LDAB
   91: *> \verbatim
   92: *>          LDAB is INTEGER
   93: *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
   94: *> \endverbatim
   95: *>
   96: *> \param[in] IPIV
   97: *> \verbatim
   98: *>          IPIV is INTEGER array, dimension (N)
   99: *>          The pivot indices; for 1 <= i <= N, row i of the matrix was
  100: *>          interchanged with row IPIV(i).
  101: *> \endverbatim
  102: *>
  103: *> \param[in] ANORM
  104: *> \verbatim
  105: *>          ANORM is DOUBLE PRECISION
  106: *>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
  107: *>          If NORM = 'I', the infinity-norm of the original matrix A.
  108: *> \endverbatim
  109: *>
  110: *> \param[out] RCOND
  111: *> \verbatim
  112: *>          RCOND is DOUBLE PRECISION
  113: *>          The reciprocal of the condition number of the matrix A,
  114: *>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
  115: *> \endverbatim
  116: *>
  117: *> \param[out] WORK
  118: *> \verbatim
  119: *>          WORK is COMPLEX*16 array, dimension (2*N)
  120: *> \endverbatim
  121: *>
  122: *> \param[out] RWORK
  123: *> \verbatim
  124: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  125: *> \endverbatim
  126: *>
  127: *> \param[out] INFO
  128: *> \verbatim
  129: *>          INFO is INTEGER
  130: *>          = 0:  successful exit
  131: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  132: *> \endverbatim
  133: *
  134: *  Authors:
  135: *  ========
  136: *
  137: *> \author Univ. of Tennessee
  138: *> \author Univ. of California Berkeley
  139: *> \author Univ. of Colorado Denver
  140: *> \author NAG Ltd.
  141: *
  142: *> \ingroup complex16GBcomputational
  143: *
  144: *  =====================================================================
  145:       SUBROUTINE ZGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
  146:      $                   WORK, RWORK, INFO )
  147: *
  148: *  -- LAPACK computational routine --
  149: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  150: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  151: *
  152: *     .. Scalar Arguments ..
  153:       CHARACTER          NORM
  154:       INTEGER            INFO, KL, KU, LDAB, N
  155:       DOUBLE PRECISION   ANORM, RCOND
  156: *     ..
  157: *     .. Array Arguments ..
  158:       INTEGER            IPIV( * )
  159:       DOUBLE PRECISION   RWORK( * )
  160:       COMPLEX*16         AB( LDAB, * ), WORK( * )
  161: *     ..
  162: *
  163: *  =====================================================================
  164: *
  165: *     .. Parameters ..
  166:       DOUBLE PRECISION   ONE, ZERO
  167:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       LOGICAL            LNOTI, ONENRM
  171:       CHARACTER          NORMIN
  172:       INTEGER            IX, J, JP, KASE, KASE1, KD, LM
  173:       DOUBLE PRECISION   AINVNM, SCALE, SMLNUM
  174:       COMPLEX*16         T, ZDUM
  175: *     ..
  176: *     .. Local Arrays ..
  177:       INTEGER            ISAVE( 3 )
  178: *     ..
  179: *     .. External Functions ..
  180:       LOGICAL            LSAME
  181:       INTEGER            IZAMAX
  182:       DOUBLE PRECISION   DLAMCH
  183:       COMPLEX*16         ZDOTC
  184:       EXTERNAL           LSAME, IZAMAX, DLAMCH, ZDOTC
  185: *     ..
  186: *     .. External Subroutines ..
  187:       EXTERNAL           XERBLA, ZAXPY, ZDRSCL, ZLACN2, ZLATBS
  188: *     ..
  189: *     .. Intrinsic Functions ..
  190:       INTRINSIC          ABS, DBLE, DIMAG, MIN
  191: *     ..
  192: *     .. Statement Functions ..
  193:       DOUBLE PRECISION   CABS1
  194: *     ..
  195: *     .. Statement Function definitions ..
  196:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  197: *     ..
  198: *     .. Executable Statements ..
  199: *
  200: *     Test the input parameters.
  201: *
  202:       INFO = 0
  203:       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
  204:       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
  205:          INFO = -1
  206:       ELSE IF( N.LT.0 ) THEN
  207:          INFO = -2
  208:       ELSE IF( KL.LT.0 ) THEN
  209:          INFO = -3
  210:       ELSE IF( KU.LT.0 ) THEN
  211:          INFO = -4
  212:       ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
  213:          INFO = -6
  214:       ELSE IF( ANORM.LT.ZERO ) THEN
  215:          INFO = -8
  216:       END IF
  217:       IF( INFO.NE.0 ) THEN
  218:          CALL XERBLA( 'ZGBCON', -INFO )
  219:          RETURN
  220:       END IF
  221: *
  222: *     Quick return if possible
  223: *
  224:       RCOND = ZERO
  225:       IF( N.EQ.0 ) THEN
  226:          RCOND = ONE
  227:          RETURN
  228:       ELSE IF( ANORM.EQ.ZERO ) THEN
  229:          RETURN
  230:       END IF
  231: *
  232:       SMLNUM = DLAMCH( 'Safe minimum' )
  233: *
  234: *     Estimate the norm of inv(A).
  235: *
  236:       AINVNM = ZERO
  237:       NORMIN = 'N'
  238:       IF( ONENRM ) THEN
  239:          KASE1 = 1
  240:       ELSE
  241:          KASE1 = 2
  242:       END IF
  243:       KD = KL + KU + 1
  244:       LNOTI = KL.GT.0
  245:       KASE = 0
  246:    10 CONTINUE
  247:       CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
  248:       IF( KASE.NE.0 ) THEN
  249:          IF( KASE.EQ.KASE1 ) THEN
  250: *
  251: *           Multiply by inv(L).
  252: *
  253:             IF( LNOTI ) THEN
  254:                DO 20 J = 1, N - 1
  255:                   LM = MIN( KL, N-J )
  256:                   JP = IPIV( J )
  257:                   T = WORK( JP )
  258:                   IF( JP.NE.J ) THEN
  259:                      WORK( JP ) = WORK( J )
  260:                      WORK( J ) = T
  261:                   END IF
  262:                   CALL ZAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
  263:    20          CONTINUE
  264:             END IF
  265: *
  266: *           Multiply by inv(U).
  267: *
  268:             CALL ZLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
  269:      $                   KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO )
  270:          ELSE
  271: *
  272: *           Multiply by inv(U**H).
  273: *
  274:             CALL ZLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
  275:      $                   NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK,
  276:      $                   INFO )
  277: *
  278: *           Multiply by inv(L**H).
  279: *
  280:             IF( LNOTI ) THEN
  281:                DO 30 J = N - 1, 1, -1
  282:                   LM = MIN( KL, N-J )
  283:                   WORK( J ) = WORK( J ) - ZDOTC( LM, AB( KD+1, J ), 1,
  284:      $                        WORK( J+1 ), 1 )
  285:                   JP = IPIV( J )
  286:                   IF( JP.NE.J ) THEN
  287:                      T = WORK( JP )
  288:                      WORK( JP ) = WORK( J )
  289:                      WORK( J ) = T
  290:                   END IF
  291:    30          CONTINUE
  292:             END IF
  293:          END IF
  294: *
  295: *        Divide X by 1/SCALE if doing so will not cause overflow.
  296: *
  297:          NORMIN = 'Y'
  298:          IF( SCALE.NE.ONE ) THEN
  299:             IX = IZAMAX( N, WORK, 1 )
  300:             IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
  301:      $         GO TO 40
  302:             CALL ZDRSCL( N, SCALE, WORK, 1 )
  303:          END IF
  304:          GO TO 10
  305:       END IF
  306: *
  307: *     Compute the estimate of the reciprocal condition number.
  308: *
  309:       IF( AINVNM.NE.ZERO )
  310:      $   RCOND = ( ONE / AINVNM ) / ANORM
  311: *
  312:    40 CONTINUE
  313:       RETURN
  314: *
  315: *     End of ZGBCON
  316: *
  317:       END

CVSweb interface <joel.bertrand@systella.fr>