File:  [local] / rpl / lapack / lapack / zgbbrd.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZGBBRD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZGBBRD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
   22: *                          LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          VECT
   26: *       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
   31: *      $                   Q( LDQ, * ), WORK( * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGBBRD reduces a complex general m-by-n band matrix A to real upper
   41: *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
   42: *>
   43: *> The routine computes B, and optionally forms Q or P**H, or computes
   44: *> Q**H*C for a given matrix C.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] VECT
   51: *> \verbatim
   52: *>          VECT is CHARACTER*1
   53: *>          Specifies whether or not the matrices Q and P**H are to be
   54: *>          formed.
   55: *>          = 'N': do not form Q or P**H;
   56: *>          = 'Q': form Q only;
   57: *>          = 'P': form P**H only;
   58: *>          = 'B': form both.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NCC
   74: *> \verbatim
   75: *>          NCC is INTEGER
   76: *>          The number of columns of the matrix C.  NCC >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] KL
   80: *> \verbatim
   81: *>          KL is INTEGER
   82: *>          The number of subdiagonals of the matrix A. KL >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] KU
   86: *> \verbatim
   87: *>          KU is INTEGER
   88: *>          The number of superdiagonals of the matrix A. KU >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] AB
   92: *> \verbatim
   93: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   94: *>          On entry, the m-by-n band matrix A, stored in rows 1 to
   95: *>          KL+KU+1. The j-th column of A is stored in the j-th column of
   96: *>          the array AB as follows:
   97: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
   98: *>          On exit, A is overwritten by values generated during the
   99: *>          reduction.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDAB
  103: *> \verbatim
  104: *>          LDAB is INTEGER
  105: *>          The leading dimension of the array A. LDAB >= KL+KU+1.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] D
  109: *> \verbatim
  110: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The diagonal elements of the bidiagonal matrix B.
  112: *> \endverbatim
  113: *>
  114: *> \param[out] E
  115: *> \verbatim
  116: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
  117: *>          The superdiagonal elements of the bidiagonal matrix B.
  118: *> \endverbatim
  119: *>
  120: *> \param[out] Q
  121: *> \verbatim
  122: *>          Q is COMPLEX*16 array, dimension (LDQ,M)
  123: *>          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
  124: *>          If VECT = 'N' or 'P', the array Q is not referenced.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDQ
  128: *> \verbatim
  129: *>          LDQ is INTEGER
  130: *>          The leading dimension of the array Q.
  131: *>          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] PT
  135: *> \verbatim
  136: *>          PT is COMPLEX*16 array, dimension (LDPT,N)
  137: *>          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
  138: *>          If VECT = 'N' or 'Q', the array PT is not referenced.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDPT
  142: *> \verbatim
  143: *>          LDPT is INTEGER
  144: *>          The leading dimension of the array PT.
  145: *>          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
  146: *> \endverbatim
  147: *>
  148: *> \param[in,out] C
  149: *> \verbatim
  150: *>          C is COMPLEX*16 array, dimension (LDC,NCC)
  151: *>          On entry, an m-by-ncc matrix C.
  152: *>          On exit, C is overwritten by Q**H*C.
  153: *>          C is not referenced if NCC = 0.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDC
  157: *> \verbatim
  158: *>          LDC is INTEGER
  159: *>          The leading dimension of the array C.
  160: *>          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] WORK
  164: *> \verbatim
  165: *>          WORK is COMPLEX*16 array, dimension (max(M,N))
  166: *> \endverbatim
  167: *>
  168: *> \param[out] RWORK
  169: *> \verbatim
  170: *>          RWORK is DOUBLE PRECISION array, dimension (max(M,N))
  171: *> \endverbatim
  172: *>
  173: *> \param[out] INFO
  174: *> \verbatim
  175: *>          INFO is INTEGER
  176: *>          = 0:  successful exit.
  177: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  178: *> \endverbatim
  179: *
  180: *  Authors:
  181: *  ========
  182: *
  183: *> \author Univ. of Tennessee
  184: *> \author Univ. of California Berkeley
  185: *> \author Univ. of Colorado Denver
  186: *> \author NAG Ltd.
  187: *
  188: *> \ingroup complex16GBcomputational
  189: *
  190: *  =====================================================================
  191:       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
  192:      $                   LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
  193: *
  194: *  -- LAPACK computational routine --
  195: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  196: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197: *
  198: *     .. Scalar Arguments ..
  199:       CHARACTER          VECT
  200:       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
  201: *     ..
  202: *     .. Array Arguments ..
  203:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  204:       COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
  205:      $                   Q( LDQ, * ), WORK( * )
  206: *     ..
  207: *
  208: *  =====================================================================
  209: *
  210: *     .. Parameters ..
  211:       DOUBLE PRECISION   ZERO
  212:       PARAMETER          ( ZERO = 0.0D+0 )
  213:       COMPLEX*16         CZERO, CONE
  214:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  215:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  216: *     ..
  217: *     .. Local Scalars ..
  218:       LOGICAL            WANTB, WANTC, WANTPT, WANTQ
  219:       INTEGER            I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
  220:      $                   KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
  221:       DOUBLE PRECISION   ABST, RC
  222:       COMPLEX*16         RA, RB, RS, T
  223: *     ..
  224: *     .. External Subroutines ..
  225:       EXTERNAL           XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
  226:      $                   ZSCAL
  227: *     ..
  228: *     .. Intrinsic Functions ..
  229:       INTRINSIC          ABS, DCONJG, MAX, MIN
  230: *     ..
  231: *     .. External Functions ..
  232:       LOGICAL            LSAME
  233:       EXTERNAL           LSAME
  234: *     ..
  235: *     .. Executable Statements ..
  236: *
  237: *     Test the input parameters
  238: *
  239:       WANTB = LSAME( VECT, 'B' )
  240:       WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
  241:       WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
  242:       WANTC = NCC.GT.0
  243:       KLU1 = KL + KU + 1
  244:       INFO = 0
  245:       IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
  246:      $     THEN
  247:          INFO = -1
  248:       ELSE IF( M.LT.0 ) THEN
  249:          INFO = -2
  250:       ELSE IF( N.LT.0 ) THEN
  251:          INFO = -3
  252:       ELSE IF( NCC.LT.0 ) THEN
  253:          INFO = -4
  254:       ELSE IF( KL.LT.0 ) THEN
  255:          INFO = -5
  256:       ELSE IF( KU.LT.0 ) THEN
  257:          INFO = -6
  258:       ELSE IF( LDAB.LT.KLU1 ) THEN
  259:          INFO = -8
  260:       ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
  261:          INFO = -12
  262:       ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
  263:          INFO = -14
  264:       ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
  265:          INFO = -16
  266:       END IF
  267:       IF( INFO.NE.0 ) THEN
  268:          CALL XERBLA( 'ZGBBRD', -INFO )
  269:          RETURN
  270:       END IF
  271: *
  272: *     Initialize Q and P**H to the unit matrix, if needed
  273: *
  274:       IF( WANTQ )
  275:      $   CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
  276:       IF( WANTPT )
  277:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
  278: *
  279: *     Quick return if possible.
  280: *
  281:       IF( M.EQ.0 .OR. N.EQ.0 )
  282:      $   RETURN
  283: *
  284:       MINMN = MIN( M, N )
  285: *
  286:       IF( KL+KU.GT.1 ) THEN
  287: *
  288: *        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
  289: *        first to lower bidiagonal form and then transform to upper
  290: *        bidiagonal
  291: *
  292:          IF( KU.GT.0 ) THEN
  293:             ML0 = 1
  294:             MU0 = 2
  295:          ELSE
  296:             ML0 = 2
  297:             MU0 = 1
  298:          END IF
  299: *
  300: *        Wherever possible, plane rotations are generated and applied in
  301: *        vector operations of length NR over the index set J1:J2:KLU1.
  302: *
  303: *        The complex sines of the plane rotations are stored in WORK,
  304: *        and the real cosines in RWORK.
  305: *
  306:          KLM = MIN( M-1, KL )
  307:          KUN = MIN( N-1, KU )
  308:          KB = KLM + KUN
  309:          KB1 = KB + 1
  310:          INCA = KB1*LDAB
  311:          NR = 0
  312:          J1 = KLM + 2
  313:          J2 = 1 - KUN
  314: *
  315:          DO 90 I = 1, MINMN
  316: *
  317: *           Reduce i-th column and i-th row of matrix to bidiagonal form
  318: *
  319:             ML = KLM + 1
  320:             MU = KUN + 1
  321:             DO 80 KK = 1, KB
  322:                J1 = J1 + KB
  323:                J2 = J2 + KB
  324: *
  325: *              generate plane rotations to annihilate nonzero elements
  326: *              which have been created below the band
  327: *
  328:                IF( NR.GT.0 )
  329:      $            CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
  330:      $                         WORK( J1 ), KB1, RWORK( J1 ), KB1 )
  331: *
  332: *              apply plane rotations from the left
  333: *
  334:                DO 10 L = 1, KB
  335:                   IF( J2-KLM+L-1.GT.N ) THEN
  336:                      NRT = NR - 1
  337:                   ELSE
  338:                      NRT = NR
  339:                   END IF
  340:                   IF( NRT.GT.0 )
  341:      $               CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
  342:      $                            AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
  343:      $                            RWORK( J1 ), WORK( J1 ), KB1 )
  344:    10          CONTINUE
  345: *
  346:                IF( ML.GT.ML0 ) THEN
  347:                   IF( ML.LE.M-I+1 ) THEN
  348: *
  349: *                    generate plane rotation to annihilate a(i+ml-1,i)
  350: *                    within the band, and apply rotation from the left
  351: *
  352:                      CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
  353:      $                            RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
  354:                      AB( KU+ML-1, I ) = RA
  355:                      IF( I.LT.N )
  356:      $                  CALL ZROT( MIN( KU+ML-2, N-I ),
  357:      $                             AB( KU+ML-2, I+1 ), LDAB-1,
  358:      $                             AB( KU+ML-1, I+1 ), LDAB-1,
  359:      $                             RWORK( I+ML-1 ), WORK( I+ML-1 ) )
  360:                   END IF
  361:                   NR = NR + 1
  362:                   J1 = J1 - KB1
  363:                END IF
  364: *
  365:                IF( WANTQ ) THEN
  366: *
  367: *                 accumulate product of plane rotations in Q
  368: *
  369:                   DO 20 J = J1, J2, KB1
  370:                      CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  371:      $                          RWORK( J ), DCONJG( WORK( J ) ) )
  372:    20             CONTINUE
  373:                END IF
  374: *
  375:                IF( WANTC ) THEN
  376: *
  377: *                 apply plane rotations to C
  378: *
  379:                   DO 30 J = J1, J2, KB1
  380:                      CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
  381:      $                          RWORK( J ), WORK( J ) )
  382:    30             CONTINUE
  383:                END IF
  384: *
  385:                IF( J2+KUN.GT.N ) THEN
  386: *
  387: *                 adjust J2 to keep within the bounds of the matrix
  388: *
  389:                   NR = NR - 1
  390:                   J2 = J2 - KB1
  391:                END IF
  392: *
  393:                DO 40 J = J1, J2, KB1
  394: *
  395: *                 create nonzero element a(j-1,j+ku) above the band
  396: *                 and store it in WORK(n+1:2*n)
  397: *
  398:                   WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
  399:                   AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
  400:    40          CONTINUE
  401: *
  402: *              generate plane rotations to annihilate nonzero elements
  403: *              which have been generated above the band
  404: *
  405:                IF( NR.GT.0 )
  406:      $            CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
  407:      $                         WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
  408:      $                         KB1 )
  409: *
  410: *              apply plane rotations from the right
  411: *
  412:                DO 50 L = 1, KB
  413:                   IF( J2+L-1.GT.M ) THEN
  414:                      NRT = NR - 1
  415:                   ELSE
  416:                      NRT = NR
  417:                   END IF
  418:                   IF( NRT.GT.0 )
  419:      $               CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
  420:      $                            AB( L, J1+KUN ), INCA,
  421:      $                            RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
  422:    50          CONTINUE
  423: *
  424:                IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
  425:                   IF( MU.LE.N-I+1 ) THEN
  426: *
  427: *                    generate plane rotation to annihilate a(i,i+mu-1)
  428: *                    within the band, and apply rotation from the right
  429: *
  430:                      CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
  431:      $                            AB( KU-MU+2, I+MU-1 ),
  432:      $                            RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
  433:                      AB( KU-MU+3, I+MU-2 ) = RA
  434:                      CALL ZROT( MIN( KL+MU-2, M-I ),
  435:      $                          AB( KU-MU+4, I+MU-2 ), 1,
  436:      $                          AB( KU-MU+3, I+MU-1 ), 1,
  437:      $                          RWORK( I+MU-1 ), WORK( I+MU-1 ) )
  438:                   END IF
  439:                   NR = NR + 1
  440:                   J1 = J1 - KB1
  441:                END IF
  442: *
  443:                IF( WANTPT ) THEN
  444: *
  445: *                 accumulate product of plane rotations in P**H
  446: *
  447:                   DO 60 J = J1, J2, KB1
  448:                      CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
  449:      $                          PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
  450:      $                          DCONJG( WORK( J+KUN ) ) )
  451:    60             CONTINUE
  452:                END IF
  453: *
  454:                IF( J2+KB.GT.M ) THEN
  455: *
  456: *                 adjust J2 to keep within the bounds of the matrix
  457: *
  458:                   NR = NR - 1
  459:                   J2 = J2 - KB1
  460:                END IF
  461: *
  462:                DO 70 J = J1, J2, KB1
  463: *
  464: *                 create nonzero element a(j+kl+ku,j+ku-1) below the
  465: *                 band and store it in WORK(1:n)
  466: *
  467:                   WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
  468:                   AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
  469:    70          CONTINUE
  470: *
  471:                IF( ML.GT.ML0 ) THEN
  472:                   ML = ML - 1
  473:                ELSE
  474:                   MU = MU - 1
  475:                END IF
  476:    80       CONTINUE
  477:    90    CONTINUE
  478:       END IF
  479: *
  480:       IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
  481: *
  482: *        A has been reduced to complex lower bidiagonal form
  483: *
  484: *        Transform lower bidiagonal form to upper bidiagonal by applying
  485: *        plane rotations from the left, overwriting superdiagonal
  486: *        elements on subdiagonal elements
  487: *
  488:          DO 100 I = 1, MIN( M-1, N )
  489:             CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
  490:             AB( 1, I ) = RA
  491:             IF( I.LT.N ) THEN
  492:                AB( 2, I ) = RS*AB( 1, I+1 )
  493:                AB( 1, I+1 ) = RC*AB( 1, I+1 )
  494:             END IF
  495:             IF( WANTQ )
  496:      $         CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
  497:      $                    DCONJG( RS ) )
  498:             IF( WANTC )
  499:      $         CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
  500:      $                    RS )
  501:   100    CONTINUE
  502:       ELSE
  503: *
  504: *        A has been reduced to complex upper bidiagonal form or is
  505: *        diagonal
  506: *
  507:          IF( KU.GT.0 .AND. M.LT.N ) THEN
  508: *
  509: *           Annihilate a(m,m+1) by applying plane rotations from the
  510: *           right
  511: *
  512:             RB = AB( KU, M+1 )
  513:             DO 110 I = M, 1, -1
  514:                CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
  515:                AB( KU+1, I ) = RA
  516:                IF( I.GT.1 ) THEN
  517:                   RB = -DCONJG( RS )*AB( KU, I )
  518:                   AB( KU, I ) = RC*AB( KU, I )
  519:                END IF
  520:                IF( WANTPT )
  521:      $            CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
  522:      $                       RC, DCONJG( RS ) )
  523:   110       CONTINUE
  524:          END IF
  525:       END IF
  526: *
  527: *     Make diagonal and superdiagonal elements real, storing them in D
  528: *     and E
  529: *
  530:       T = AB( KU+1, 1 )
  531:       DO 120 I = 1, MINMN
  532:          ABST = ABS( T )
  533:          D( I ) = ABST
  534:          IF( ABST.NE.ZERO ) THEN
  535:             T = T / ABST
  536:          ELSE
  537:             T = CONE
  538:          END IF
  539:          IF( WANTQ )
  540:      $      CALL ZSCAL( M, T, Q( 1, I ), 1 )
  541:          IF( WANTC )
  542:      $      CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
  543:          IF( I.LT.MINMN ) THEN
  544:             IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
  545:                E( I ) = ZERO
  546:                T = AB( 1, I+1 )
  547:             ELSE
  548:                IF( KU.EQ.0 ) THEN
  549:                   T = AB( 2, I )*DCONJG( T )
  550:                ELSE
  551:                   T = AB( KU, I+1 )*DCONJG( T )
  552:                END IF
  553:                ABST = ABS( T )
  554:                E( I ) = ABST
  555:                IF( ABST.NE.ZERO ) THEN
  556:                   T = T / ABST
  557:                ELSE
  558:                   T = CONE
  559:                END IF
  560:                IF( WANTPT )
  561:      $            CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
  562:                T = AB( KU+1, I+1 )*DCONJG( T )
  563:             END IF
  564:          END IF
  565:   120 CONTINUE
  566:       RETURN
  567: *
  568: *     End of ZGBBRD
  569: *
  570:       END

CVSweb interface <joel.bertrand@systella.fr>