File:  [local] / rpl / lapack / lapack / zgbbrd.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 14:22:44 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_16, rpl-4_1_15, rpl-4_1_14, rpl-4_1_13, rpl-4_1_12, rpl-4_1_11, HEAD
Mise à jour de lapack.

    1: *> \brief \b ZGBBRD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZGBBRD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
   22: *                          LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          VECT
   26: *       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
   31: *      $                   Q( LDQ, * ), WORK( * )
   32: *       ..
   33: *  
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> ZGBBRD reduces a complex general m-by-n band matrix A to real upper
   41: *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
   42: *>
   43: *> The routine computes B, and optionally forms Q or P**H, or computes
   44: *> Q**H*C for a given matrix C.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] VECT
   51: *> \verbatim
   52: *>          VECT is CHARACTER*1
   53: *>          Specifies whether or not the matrices Q and P**H are to be
   54: *>          formed.
   55: *>          = 'N': do not form Q or P**H;
   56: *>          = 'Q': form Q only;
   57: *>          = 'P': form P**H only;
   58: *>          = 'B': form both.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix A.  M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix A.  N >= 0.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] NCC
   74: *> \verbatim
   75: *>          NCC is INTEGER
   76: *>          The number of columns of the matrix C.  NCC >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] KL
   80: *> \verbatim
   81: *>          KL is INTEGER
   82: *>          The number of subdiagonals of the matrix A. KL >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] KU
   86: *> \verbatim
   87: *>          KU is INTEGER
   88: *>          The number of superdiagonals of the matrix A. KU >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in,out] AB
   92: *> \verbatim
   93: *>          AB is COMPLEX*16 array, dimension (LDAB,N)
   94: *>          On entry, the m-by-n band matrix A, stored in rows 1 to
   95: *>          KL+KU+1. The j-th column of A is stored in the j-th column of
   96: *>          the array AB as follows:
   97: *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
   98: *>          On exit, A is overwritten by values generated during the
   99: *>          reduction.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDAB
  103: *> \verbatim
  104: *>          LDAB is INTEGER
  105: *>          The leading dimension of the array A. LDAB >= KL+KU+1.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] D
  109: *> \verbatim
  110: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The diagonal elements of the bidiagonal matrix B.
  112: *> \endverbatim
  113: *>
  114: *> \param[out] E
  115: *> \verbatim
  116: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
  117: *>          The superdiagonal elements of the bidiagonal matrix B.
  118: *> \endverbatim
  119: *>
  120: *> \param[out] Q
  121: *> \verbatim
  122: *>          Q is COMPLEX*16 array, dimension (LDQ,M)
  123: *>          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
  124: *>          If VECT = 'N' or 'P', the array Q is not referenced.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] LDQ
  128: *> \verbatim
  129: *>          LDQ is INTEGER
  130: *>          The leading dimension of the array Q.
  131: *>          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
  132: *> \endverbatim
  133: *>
  134: *> \param[out] PT
  135: *> \verbatim
  136: *>          PT is COMPLEX*16 array, dimension (LDPT,N)
  137: *>          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
  138: *>          If VECT = 'N' or 'Q', the array PT is not referenced.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDPT
  142: *> \verbatim
  143: *>          LDPT is INTEGER
  144: *>          The leading dimension of the array PT.
  145: *>          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
  146: *> \endverbatim
  147: *>
  148: *> \param[in,out] C
  149: *> \verbatim
  150: *>          C is COMPLEX*16 array, dimension (LDC,NCC)
  151: *>          On entry, an m-by-ncc matrix C.
  152: *>          On exit, C is overwritten by Q**H*C.
  153: *>          C is not referenced if NCC = 0.
  154: *> \endverbatim
  155: *>
  156: *> \param[in] LDC
  157: *> \verbatim
  158: *>          LDC is INTEGER
  159: *>          The leading dimension of the array C.
  160: *>          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] WORK
  164: *> \verbatim
  165: *>          WORK is COMPLEX*16 array, dimension (max(M,N))
  166: *> \endverbatim
  167: *>
  168: *> \param[out] RWORK
  169: *> \verbatim
  170: *>          RWORK is DOUBLE PRECISION array, dimension (max(M,N))
  171: *> \endverbatim
  172: *>
  173: *> \param[out] INFO
  174: *> \verbatim
  175: *>          INFO is INTEGER
  176: *>          = 0:  successful exit.
  177: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  178: *> \endverbatim
  179: *
  180: *  Authors:
  181: *  ========
  182: *
  183: *> \author Univ. of Tennessee 
  184: *> \author Univ. of California Berkeley 
  185: *> \author Univ. of Colorado Denver 
  186: *> \author NAG Ltd. 
  187: *
  188: *> \date November 2011
  189: *
  190: *> \ingroup complex16GBcomputational
  191: *
  192: *  =====================================================================
  193:       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
  194:      $                   LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
  195: *
  196: *  -- LAPACK computational routine (version 3.4.0) --
  197: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  198: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  199: *     November 2011
  200: *
  201: *     .. Scalar Arguments ..
  202:       CHARACTER          VECT
  203:       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
  204: *     ..
  205: *     .. Array Arguments ..
  206:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  207:       COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
  208:      $                   Q( LDQ, * ), WORK( * )
  209: *     ..
  210: *
  211: *  =====================================================================
  212: *
  213: *     .. Parameters ..
  214:       DOUBLE PRECISION   ZERO
  215:       PARAMETER          ( ZERO = 0.0D+0 )
  216:       COMPLEX*16         CZERO, CONE
  217:       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
  218:      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
  219: *     ..
  220: *     .. Local Scalars ..
  221:       LOGICAL            WANTB, WANTC, WANTPT, WANTQ
  222:       INTEGER            I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
  223:      $                   KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
  224:       DOUBLE PRECISION   ABST, RC
  225:       COMPLEX*16         RA, RB, RS, T
  226: *     ..
  227: *     .. External Subroutines ..
  228:       EXTERNAL           XERBLA, ZLARGV, ZLARTG, ZLARTV, ZLASET, ZROT,
  229:      $                   ZSCAL
  230: *     ..
  231: *     .. Intrinsic Functions ..
  232:       INTRINSIC          ABS, DCONJG, MAX, MIN
  233: *     ..
  234: *     .. External Functions ..
  235:       LOGICAL            LSAME
  236:       EXTERNAL           LSAME
  237: *     ..
  238: *     .. Executable Statements ..
  239: *
  240: *     Test the input parameters
  241: *
  242:       WANTB = LSAME( VECT, 'B' )
  243:       WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
  244:       WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
  245:       WANTC = NCC.GT.0
  246:       KLU1 = KL + KU + 1
  247:       INFO = 0
  248:       IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
  249:      $     THEN
  250:          INFO = -1
  251:       ELSE IF( M.LT.0 ) THEN
  252:          INFO = -2
  253:       ELSE IF( N.LT.0 ) THEN
  254:          INFO = -3
  255:       ELSE IF( NCC.LT.0 ) THEN
  256:          INFO = -4
  257:       ELSE IF( KL.LT.0 ) THEN
  258:          INFO = -5
  259:       ELSE IF( KU.LT.0 ) THEN
  260:          INFO = -6
  261:       ELSE IF( LDAB.LT.KLU1 ) THEN
  262:          INFO = -8
  263:       ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
  264:          INFO = -12
  265:       ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
  266:          INFO = -14
  267:       ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
  268:          INFO = -16
  269:       END IF
  270:       IF( INFO.NE.0 ) THEN
  271:          CALL XERBLA( 'ZGBBRD', -INFO )
  272:          RETURN
  273:       END IF
  274: *
  275: *     Initialize Q and P**H to the unit matrix, if needed
  276: *
  277:       IF( WANTQ )
  278:      $   CALL ZLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
  279:       IF( WANTPT )
  280:      $   CALL ZLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
  281: *
  282: *     Quick return if possible.
  283: *
  284:       IF( M.EQ.0 .OR. N.EQ.0 )
  285:      $   RETURN
  286: *
  287:       MINMN = MIN( M, N )
  288: *
  289:       IF( KL+KU.GT.1 ) THEN
  290: *
  291: *        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
  292: *        first to lower bidiagonal form and then transform to upper
  293: *        bidiagonal
  294: *
  295:          IF( KU.GT.0 ) THEN
  296:             ML0 = 1
  297:             MU0 = 2
  298:          ELSE
  299:             ML0 = 2
  300:             MU0 = 1
  301:          END IF
  302: *
  303: *        Wherever possible, plane rotations are generated and applied in
  304: *        vector operations of length NR over the index set J1:J2:KLU1.
  305: *
  306: *        The complex sines of the plane rotations are stored in WORK,
  307: *        and the real cosines in RWORK.
  308: *
  309:          KLM = MIN( M-1, KL )
  310:          KUN = MIN( N-1, KU )
  311:          KB = KLM + KUN
  312:          KB1 = KB + 1
  313:          INCA = KB1*LDAB
  314:          NR = 0
  315:          J1 = KLM + 2
  316:          J2 = 1 - KUN
  317: *
  318:          DO 90 I = 1, MINMN
  319: *
  320: *           Reduce i-th column and i-th row of matrix to bidiagonal form
  321: *
  322:             ML = KLM + 1
  323:             MU = KUN + 1
  324:             DO 80 KK = 1, KB
  325:                J1 = J1 + KB
  326:                J2 = J2 + KB
  327: *
  328: *              generate plane rotations to annihilate nonzero elements
  329: *              which have been created below the band
  330: *
  331:                IF( NR.GT.0 )
  332:      $            CALL ZLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
  333:      $                         WORK( J1 ), KB1, RWORK( J1 ), KB1 )
  334: *
  335: *              apply plane rotations from the left
  336: *
  337:                DO 10 L = 1, KB
  338:                   IF( J2-KLM+L-1.GT.N ) THEN
  339:                      NRT = NR - 1
  340:                   ELSE
  341:                      NRT = NR
  342:                   END IF
  343:                   IF( NRT.GT.0 )
  344:      $               CALL ZLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
  345:      $                            AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
  346:      $                            RWORK( J1 ), WORK( J1 ), KB1 )
  347:    10          CONTINUE
  348: *
  349:                IF( ML.GT.ML0 ) THEN
  350:                   IF( ML.LE.M-I+1 ) THEN
  351: *
  352: *                    generate plane rotation to annihilate a(i+ml-1,i)
  353: *                    within the band, and apply rotation from the left
  354: *
  355:                      CALL ZLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
  356:      $                            RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
  357:                      AB( KU+ML-1, I ) = RA
  358:                      IF( I.LT.N )
  359:      $                  CALL ZROT( MIN( KU+ML-2, N-I ),
  360:      $                             AB( KU+ML-2, I+1 ), LDAB-1,
  361:      $                             AB( KU+ML-1, I+1 ), LDAB-1,
  362:      $                             RWORK( I+ML-1 ), WORK( I+ML-1 ) )
  363:                   END IF
  364:                   NR = NR + 1
  365:                   J1 = J1 - KB1
  366:                END IF
  367: *
  368:                IF( WANTQ ) THEN
  369: *
  370: *                 accumulate product of plane rotations in Q
  371: *
  372:                   DO 20 J = J1, J2, KB1
  373:                      CALL ZROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
  374:      $                          RWORK( J ), DCONJG( WORK( J ) ) )
  375:    20             CONTINUE
  376:                END IF
  377: *
  378:                IF( WANTC ) THEN
  379: *
  380: *                 apply plane rotations to C
  381: *
  382:                   DO 30 J = J1, J2, KB1
  383:                      CALL ZROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
  384:      $                          RWORK( J ), WORK( J ) )
  385:    30             CONTINUE
  386:                END IF
  387: *
  388:                IF( J2+KUN.GT.N ) THEN
  389: *
  390: *                 adjust J2 to keep within the bounds of the matrix
  391: *
  392:                   NR = NR - 1
  393:                   J2 = J2 - KB1
  394:                END IF
  395: *
  396:                DO 40 J = J1, J2, KB1
  397: *
  398: *                 create nonzero element a(j-1,j+ku) above the band
  399: *                 and store it in WORK(n+1:2*n)
  400: *
  401:                   WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
  402:                   AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
  403:    40          CONTINUE
  404: *
  405: *              generate plane rotations to annihilate nonzero elements
  406: *              which have been generated above the band
  407: *
  408:                IF( NR.GT.0 )
  409:      $            CALL ZLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
  410:      $                         WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
  411:      $                         KB1 )
  412: *
  413: *              apply plane rotations from the right
  414: *
  415:                DO 50 L = 1, KB
  416:                   IF( J2+L-1.GT.M ) THEN
  417:                      NRT = NR - 1
  418:                   ELSE
  419:                      NRT = NR
  420:                   END IF
  421:                   IF( NRT.GT.0 )
  422:      $               CALL ZLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
  423:      $                            AB( L, J1+KUN ), INCA,
  424:      $                            RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
  425:    50          CONTINUE
  426: *
  427:                IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
  428:                   IF( MU.LE.N-I+1 ) THEN
  429: *
  430: *                    generate plane rotation to annihilate a(i,i+mu-1)
  431: *                    within the band, and apply rotation from the right
  432: *
  433:                      CALL ZLARTG( AB( KU-MU+3, I+MU-2 ),
  434:      $                            AB( KU-MU+2, I+MU-1 ),
  435:      $                            RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
  436:                      AB( KU-MU+3, I+MU-2 ) = RA
  437:                      CALL ZROT( MIN( KL+MU-2, M-I ),
  438:      $                          AB( KU-MU+4, I+MU-2 ), 1,
  439:      $                          AB( KU-MU+3, I+MU-1 ), 1,
  440:      $                          RWORK( I+MU-1 ), WORK( I+MU-1 ) )
  441:                   END IF
  442:                   NR = NR + 1
  443:                   J1 = J1 - KB1
  444:                END IF
  445: *
  446:                IF( WANTPT ) THEN
  447: *
  448: *                 accumulate product of plane rotations in P**H
  449: *
  450:                   DO 60 J = J1, J2, KB1
  451:                      CALL ZROT( N, PT( J+KUN-1, 1 ), LDPT,
  452:      $                          PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
  453:      $                          DCONJG( WORK( J+KUN ) ) )
  454:    60             CONTINUE
  455:                END IF
  456: *
  457:                IF( J2+KB.GT.M ) THEN
  458: *
  459: *                 adjust J2 to keep within the bounds of the matrix
  460: *
  461:                   NR = NR - 1
  462:                   J2 = J2 - KB1
  463:                END IF
  464: *
  465:                DO 70 J = J1, J2, KB1
  466: *
  467: *                 create nonzero element a(j+kl+ku,j+ku-1) below the
  468: *                 band and store it in WORK(1:n)
  469: *
  470:                   WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
  471:                   AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
  472:    70          CONTINUE
  473: *
  474:                IF( ML.GT.ML0 ) THEN
  475:                   ML = ML - 1
  476:                ELSE
  477:                   MU = MU - 1
  478:                END IF
  479:    80       CONTINUE
  480:    90    CONTINUE
  481:       END IF
  482: *
  483:       IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
  484: *
  485: *        A has been reduced to complex lower bidiagonal form
  486: *
  487: *        Transform lower bidiagonal form to upper bidiagonal by applying
  488: *        plane rotations from the left, overwriting superdiagonal
  489: *        elements on subdiagonal elements
  490: *
  491:          DO 100 I = 1, MIN( M-1, N )
  492:             CALL ZLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
  493:             AB( 1, I ) = RA
  494:             IF( I.LT.N ) THEN
  495:                AB( 2, I ) = RS*AB( 1, I+1 )
  496:                AB( 1, I+1 ) = RC*AB( 1, I+1 )
  497:             END IF
  498:             IF( WANTQ )
  499:      $         CALL ZROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
  500:      $                    DCONJG( RS ) )
  501:             IF( WANTC )
  502:      $         CALL ZROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
  503:      $                    RS )
  504:   100    CONTINUE
  505:       ELSE
  506: *
  507: *        A has been reduced to complex upper bidiagonal form or is
  508: *        diagonal
  509: *
  510:          IF( KU.GT.0 .AND. M.LT.N ) THEN
  511: *
  512: *           Annihilate a(m,m+1) by applying plane rotations from the
  513: *           right
  514: *
  515:             RB = AB( KU, M+1 )
  516:             DO 110 I = M, 1, -1
  517:                CALL ZLARTG( AB( KU+1, I ), RB, RC, RS, RA )
  518:                AB( KU+1, I ) = RA
  519:                IF( I.GT.1 ) THEN
  520:                   RB = -DCONJG( RS )*AB( KU, I )
  521:                   AB( KU, I ) = RC*AB( KU, I )
  522:                END IF
  523:                IF( WANTPT )
  524:      $            CALL ZROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
  525:      $                       RC, DCONJG( RS ) )
  526:   110       CONTINUE
  527:          END IF
  528:       END IF
  529: *
  530: *     Make diagonal and superdiagonal elements real, storing them in D
  531: *     and E
  532: *
  533:       T = AB( KU+1, 1 )
  534:       DO 120 I = 1, MINMN
  535:          ABST = ABS( T )
  536:          D( I ) = ABST
  537:          IF( ABST.NE.ZERO ) THEN
  538:             T = T / ABST
  539:          ELSE
  540:             T = CONE
  541:          END IF
  542:          IF( WANTQ )
  543:      $      CALL ZSCAL( M, T, Q( 1, I ), 1 )
  544:          IF( WANTC )
  545:      $      CALL ZSCAL( NCC, DCONJG( T ), C( I, 1 ), LDC )
  546:          IF( I.LT.MINMN ) THEN
  547:             IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
  548:                E( I ) = ZERO
  549:                T = AB( 1, I+1 )
  550:             ELSE
  551:                IF( KU.EQ.0 ) THEN
  552:                   T = AB( 2, I )*DCONJG( T )
  553:                ELSE
  554:                   T = AB( KU, I+1 )*DCONJG( T )
  555:                END IF
  556:                ABST = ABS( T )
  557:                E( I ) = ABST
  558:                IF( ABST.NE.ZERO ) THEN
  559:                   T = T / ABST
  560:                ELSE
  561:                   T = CONE
  562:                END IF
  563:                IF( WANTPT )
  564:      $            CALL ZSCAL( N, T, PT( I+1, 1 ), LDPT )
  565:                T = AB( KU+1, I+1 )*DCONJG( T )
  566:             END IF
  567:          END IF
  568:   120 CONTINUE
  569:       RETURN
  570: *
  571: *     End of ZGBBRD
  572: *
  573:       END

CVSweb interface <joel.bertrand@systella.fr>