File:  [local] / rpl / lapack / lapack / zcposv.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:03 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZCPOSV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
   22: *                          SWORK, RWORK, ITER, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX            SWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZCPOSV computes the solution to a complex system of linear equations
   42: *>    A * X = B,
   43: *> where A is an N-by-N Hermitian positive definite matrix and X and B
   44: *> are N-by-NRHS matrices.
   45: *>
   46: *> ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
   47: *> factorization within an iterative refinement procedure to produce a
   48: *> solution with COMPLEX*16 normwise backward error quality (see below).
   49: *> If the approach fails the method switches to a COMPLEX*16
   50: *> factorization and solve.
   51: *>
   52: *> The iterative refinement is not going to be a winning strategy if
   53: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
   54: *> small. A reasonable strategy should take the number of right-hand
   55: *> sides and the size of the matrix into account. This might be done
   56: *> with a call to ILAENV in the future. Up to now, we always try
   57: *> iterative refinement.
   58: *>
   59: *> The iterative refinement process is stopped if
   60: *>     ITER > ITERMAX
   61: *> or for all the RHS we have:
   62: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
   63: *> where
   64: *>     o ITER is the number of the current iteration in the iterative
   65: *>       refinement process
   66: *>     o RNRM is the infinity-norm of the residual
   67: *>     o XNRM is the infinity-norm of the solution
   68: *>     o ANRM is the infinity-operator-norm of the matrix A
   69: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
   70: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
   71: *> respectively.
   72: *> \endverbatim
   73: *
   74: *  Arguments:
   75: *  ==========
   76: *
   77: *> \param[in] UPLO
   78: *> \verbatim
   79: *>          UPLO is CHARACTER*1
   80: *>          = 'U':  Upper triangle of A is stored;
   81: *>          = 'L':  Lower triangle of A is stored.
   82: *> \endverbatim
   83: *>
   84: *> \param[in] N
   85: *> \verbatim
   86: *>          N is INTEGER
   87: *>          The number of linear equations, i.e., the order of the
   88: *>          matrix A.  N >= 0.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] NRHS
   92: *> \verbatim
   93: *>          NRHS is INTEGER
   94: *>          The number of right hand sides, i.e., the number of columns
   95: *>          of the matrix B.  NRHS >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in,out] A
   99: *> \verbatim
  100: *>          A is COMPLEX*16 array,
  101: *>          dimension (LDA,N)
  102: *>          On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  103: *>          N-by-N upper triangular part of A contains the upper
  104: *>          triangular part of the matrix A, and the strictly lower
  105: *>          triangular part of A is not referenced.  If UPLO = 'L', the
  106: *>          leading N-by-N lower triangular part of A contains the lower
  107: *>          triangular part of the matrix A, and the strictly upper
  108: *>          triangular part of A is not referenced.
  109: *>
  110: *>          Note that the imaginary parts of the diagonal
  111: *>          elements need not be set and are assumed to be zero.
  112: *>
  113: *>          On exit, if iterative refinement has been successfully used
  114: *>          (INFO = 0 and ITER >= 0, see description below), then A is
  115: *>          unchanged, if double precision factorization has been used
  116: *>          (INFO = 0 and ITER < 0, see description below), then the
  117: *>          array A contains the factor U or L from the Cholesky
  118: *>          factorization A = U**H*U or A = L*L**H.
  119: *> \endverbatim
  120: *>
  121: *> \param[in] LDA
  122: *> \verbatim
  123: *>          LDA is INTEGER
  124: *>          The leading dimension of the array A.  LDA >= max(1,N).
  125: *> \endverbatim
  126: *>
  127: *> \param[in] B
  128: *> \verbatim
  129: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  130: *>          The N-by-NRHS right hand side matrix B.
  131: *> \endverbatim
  132: *>
  133: *> \param[in] LDB
  134: *> \verbatim
  135: *>          LDB is INTEGER
  136: *>          The leading dimension of the array B.  LDB >= max(1,N).
  137: *> \endverbatim
  138: *>
  139: *> \param[out] X
  140: *> \verbatim
  141: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  142: *>          If INFO = 0, the N-by-NRHS solution matrix X.
  143: *> \endverbatim
  144: *>
  145: *> \param[in] LDX
  146: *> \verbatim
  147: *>          LDX is INTEGER
  148: *>          The leading dimension of the array X.  LDX >= max(1,N).
  149: *> \endverbatim
  150: *>
  151: *> \param[out] WORK
  152: *> \verbatim
  153: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
  154: *>          This array is used to hold the residual vectors.
  155: *> \endverbatim
  156: *>
  157: *> \param[out] SWORK
  158: *> \verbatim
  159: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
  160: *>          This array is used to use the single precision matrix and the
  161: *>          right-hand sides or solutions in single precision.
  162: *> \endverbatim
  163: *>
  164: *> \param[out] RWORK
  165: *> \verbatim
  166: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  167: *> \endverbatim
  168: *>
  169: *> \param[out] ITER
  170: *> \verbatim
  171: *>          ITER is INTEGER
  172: *>          < 0: iterative refinement has failed, COMPLEX*16
  173: *>               factorization has been performed
  174: *>               -1 : the routine fell back to full precision for
  175: *>                    implementation- or machine-specific reasons
  176: *>               -2 : narrowing the precision induced an overflow,
  177: *>                    the routine fell back to full precision
  178: *>               -3 : failure of CPOTRF
  179: *>               -31: stop the iterative refinement after the 30th
  180: *>                    iterations
  181: *>          > 0: iterative refinement has been successfully used.
  182: *>               Returns the number of iterations
  183: *> \endverbatim
  184: *>
  185: *> \param[out] INFO
  186: *> \verbatim
  187: *>          INFO is INTEGER
  188: *>          = 0:  successful exit
  189: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  190: *>          > 0:  if INFO = i, the leading minor of order i of
  191: *>                (COMPLEX*16) A is not positive definite, so the
  192: *>                factorization could not be completed, and the solution
  193: *>                has not been computed.
  194: *> \endverbatim
  195: *
  196: *  Authors:
  197: *  ========
  198: *
  199: *> \author Univ. of Tennessee
  200: *> \author Univ. of California Berkeley
  201: *> \author Univ. of Colorado Denver
  202: *> \author NAG Ltd.
  203: *
  204: *> \date June 2016
  205: *
  206: *> \ingroup complex16POsolve
  207: *
  208: *  =====================================================================
  209:       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
  210:      $                   SWORK, RWORK, ITER, INFO )
  211: *
  212: *  -- LAPACK driver routine (version 3.8.0) --
  213: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  214: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  215: *     June 2016
  216: *
  217: *     .. Scalar Arguments ..
  218:       CHARACTER          UPLO
  219:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
  220: *     ..
  221: *     .. Array Arguments ..
  222:       DOUBLE PRECISION   RWORK( * )
  223:       COMPLEX            SWORK( * )
  224:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
  225:      $                   X( LDX, * )
  226: *     ..
  227: *
  228: *  =====================================================================
  229: *
  230: *     .. Parameters ..
  231:       LOGICAL            DOITREF
  232:       PARAMETER          ( DOITREF = .TRUE. )
  233: *
  234:       INTEGER            ITERMAX
  235:       PARAMETER          ( ITERMAX = 30 )
  236: *
  237:       DOUBLE PRECISION   BWDMAX
  238:       PARAMETER          ( BWDMAX = 1.0E+00 )
  239: *
  240:       COMPLEX*16         NEGONE, ONE
  241:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  242:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
  243: *
  244: *     .. Local Scalars ..
  245:       INTEGER            I, IITER, PTSA, PTSX
  246:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
  247:       COMPLEX*16         ZDUM
  248: *
  249: *     .. External Subroutines ..
  250:       EXTERNAL           ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
  251:      $                   CPOTRF, CPOTRS, XERBLA, ZPOTRF, ZPOTRS
  252: *     ..
  253: *     .. External Functions ..
  254:       INTEGER            IZAMAX
  255:       DOUBLE PRECISION   DLAMCH, ZLANHE
  256:       LOGICAL            LSAME
  257:       EXTERNAL           IZAMAX, DLAMCH, ZLANHE, LSAME
  258: *     ..
  259: *     .. Intrinsic Functions ..
  260:       INTRINSIC          ABS, DBLE, MAX, SQRT
  261: *     .. Statement Functions ..
  262:       DOUBLE PRECISION   CABS1
  263: *     ..
  264: *     .. Statement Function definitions ..
  265:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  266: *     ..
  267: *     .. Executable Statements ..
  268: *
  269:       INFO = 0
  270:       ITER = 0
  271: *
  272: *     Test the input parameters.
  273: *
  274:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  275:          INFO = -1
  276:       ELSE IF( N.LT.0 ) THEN
  277:          INFO = -2
  278:       ELSE IF( NRHS.LT.0 ) THEN
  279:          INFO = -3
  280:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  281:          INFO = -5
  282:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  283:          INFO = -7
  284:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  285:          INFO = -9
  286:       END IF
  287:       IF( INFO.NE.0 ) THEN
  288:          CALL XERBLA( 'ZCPOSV', -INFO )
  289:          RETURN
  290:       END IF
  291: *
  292: *     Quick return if (N.EQ.0).
  293: *
  294:       IF( N.EQ.0 )
  295:      $   RETURN
  296: *
  297: *     Skip single precision iterative refinement if a priori slower
  298: *     than double precision factorization.
  299: *
  300:       IF( .NOT.DOITREF ) THEN
  301:          ITER = -1
  302:          GO TO 40
  303:       END IF
  304: *
  305: *     Compute some constants.
  306: *
  307:       ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
  308:       EPS = DLAMCH( 'Epsilon' )
  309:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  310: *
  311: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  312: *
  313:       PTSA = 1
  314:       PTSX = PTSA + N*N
  315: *
  316: *     Convert B from double precision to single precision and store the
  317: *     result in SX.
  318: *
  319:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  320: *
  321:       IF( INFO.NE.0 ) THEN
  322:          ITER = -2
  323:          GO TO 40
  324:       END IF
  325: *
  326: *     Convert A from double precision to single precision and store the
  327: *     result in SA.
  328: *
  329:       CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
  330: *
  331:       IF( INFO.NE.0 ) THEN
  332:          ITER = -2
  333:          GO TO 40
  334:       END IF
  335: *
  336: *     Compute the Cholesky factorization of SA.
  337: *
  338:       CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
  339: *
  340:       IF( INFO.NE.0 ) THEN
  341:          ITER = -3
  342:          GO TO 40
  343:       END IF
  344: *
  345: *     Solve the system SA*SX = SB.
  346: *
  347:       CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  348:      $             INFO )
  349: *
  350: *     Convert SX back to COMPLEX*16
  351: *
  352:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  353: *
  354: *     Compute R = B - AX (R is WORK).
  355: *
  356:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  357: *
  358:       CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  359:      $            WORK, N )
  360: *
  361: *     Check whether the NRHS normwise backward errors satisfy the
  362: *     stopping criterion. If yes, set ITER=0 and return.
  363: *
  364:       DO I = 1, NRHS
  365:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  366:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  367:          IF( RNRM.GT.XNRM*CTE )
  368:      $      GO TO 10
  369:       END DO
  370: *
  371: *     If we are here, the NRHS normwise backward errors satisfy the
  372: *     stopping criterion. We are good to exit.
  373: *
  374:       ITER = 0
  375:       RETURN
  376: *
  377:    10 CONTINUE
  378: *
  379:       DO 30 IITER = 1, ITERMAX
  380: *
  381: *        Convert R (in WORK) from double precision to single precision
  382: *        and store the result in SX.
  383: *
  384:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  385: *
  386:          IF( INFO.NE.0 ) THEN
  387:             ITER = -2
  388:             GO TO 40
  389:          END IF
  390: *
  391: *        Solve the system SA*SX = SR.
  392: *
  393:          CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
  394:      $                INFO )
  395: *
  396: *        Convert SX back to double precision and update the current
  397: *        iterate.
  398: *
  399:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  400: *
  401:          DO I = 1, NRHS
  402:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  403:          END DO
  404: *
  405: *        Compute R = B - AX (R is WORK).
  406: *
  407:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  408: *
  409:          CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
  410:      $               WORK, N )
  411: *
  412: *        Check whether the NRHS normwise backward errors satisfy the
  413: *        stopping criterion. If yes, set ITER=IITER>0 and return.
  414: *
  415:          DO I = 1, NRHS
  416:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  417:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  418:             IF( RNRM.GT.XNRM*CTE )
  419:      $         GO TO 20
  420:          END DO
  421: *
  422: *        If we are here, the NRHS normwise backward errors satisfy the
  423: *        stopping criterion, we are good to exit.
  424: *
  425:          ITER = IITER
  426: *
  427:          RETURN
  428: *
  429:    20    CONTINUE
  430: *
  431:    30 CONTINUE
  432: *
  433: *     If we are at this place of the code, this is because we have
  434: *     performed ITER=ITERMAX iterations and never satisfied the
  435: *     stopping criterion, set up the ITER flag accordingly and follow
  436: *     up on double precision routine.
  437: *
  438:       ITER = -ITERMAX - 1
  439: *
  440:    40 CONTINUE
  441: *
  442: *     Single-precision iterative refinement failed to converge to a
  443: *     satisfactory solution, so we resort to double precision.
  444: *
  445:       CALL ZPOTRF( UPLO, N, A, LDA, INFO )
  446: *
  447:       IF( INFO.NE.0 )
  448:      $   RETURN
  449: *
  450:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  451:       CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
  452: *
  453:       RETURN
  454: *
  455: *     End of ZCPOSV.
  456: *
  457:       END

CVSweb interface <joel.bertrand@systella.fr>