Annotation of rpl/lapack/lapack/zcposv.f, revision 1.5

1.1       bertrand    1:       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
                      2:      +                   SWORK, RWORK, ITER, INFO )
                      3: *
1.4       bertrand    4: *  -- LAPACK PROTOTYPE driver routine (version 3.3.0)                 --
1.1       bertrand    5: *
1.4       bertrand    6: *     November 2010
1.1       bertrand    7: *
                      8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                     10: *     ..
                     11: *     .. Scalar Arguments ..
                     12:       CHARACTER          UPLO
                     13:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       DOUBLE PRECISION   RWORK( * )
                     17:       COMPLEX            SWORK( * )
                     18:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     19:      +                   X( LDX, * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  ZCPOSV computes the solution to a complex system of linear equations
                     26: *     A * X = B,
                     27: *  where A is an N-by-N Hermitian positive definite matrix and X and B
                     28: *  are N-by-NRHS matrices.
                     29: *
                     30: *  ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
                     31: *  factorization within an iterative refinement procedure to produce a
                     32: *  solution with COMPLEX*16 normwise backward error quality (see below).
                     33: *  If the approach fails the method switches to a COMPLEX*16
                     34: *  factorization and solve.
                     35: *
                     36: *  The iterative refinement is not going to be a winning strategy if
                     37: *  the ratio COMPLEX performance over COMPLEX*16 performance is too
                     38: *  small. A reasonable strategy should take the number of right-hand
                     39: *  sides and the size of the matrix into account. This might be done
                     40: *  with a call to ILAENV in the future. Up to now, we always try
                     41: *  iterative refinement.
                     42: *
                     43: *  The iterative refinement process is stopped if
                     44: *      ITER > ITERMAX
                     45: *  or for all the RHS we have:
                     46: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     47: *  where
                     48: *      o ITER is the number of the current iteration in the iterative
                     49: *        refinement process
                     50: *      o RNRM is the infinity-norm of the residual
                     51: *      o XNRM is the infinity-norm of the solution
                     52: *      o ANRM is the infinity-operator-norm of the matrix A
                     53: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     54: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     55: *  respectively.
                     56: *
                     57: *  Arguments
                     58: *  =========
                     59: *
1.4       bertrand   60: *  UPLO    (input) CHARACTER*1
1.1       bertrand   61: *          = 'U':  Upper triangle of A is stored;
                     62: *          = 'L':  Lower triangle of A is stored.
                     63: *
                     64: *  N       (input) INTEGER
                     65: *          The number of linear equations, i.e., the order of the
                     66: *          matrix A.  N >= 0.
                     67: *
                     68: *  NRHS    (input) INTEGER
                     69: *          The number of right hand sides, i.e., the number of columns
                     70: *          of the matrix B.  NRHS >= 0.
                     71: *
                     72: *  A       (input/output) COMPLEX*16 array,
                     73: *          dimension (LDA,N)
                     74: *          On entry, the Hermitian matrix A. If UPLO = 'U', the leading
                     75: *          N-by-N upper triangular part of A contains the upper
                     76: *          triangular part of the matrix A, and the strictly lower
                     77: *          triangular part of A is not referenced.  If UPLO = 'L', the
                     78: *          leading N-by-N lower triangular part of A contains the lower
                     79: *          triangular part of the matrix A, and the strictly upper
                     80: *          triangular part of A is not referenced.
                     81: *
                     82: *          Note that the imaginary parts of the diagonal
                     83: *          elements need not be set and are assumed to be zero.
                     84: *
                     85: *          On exit, if iterative refinement has been successfully used
                     86: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     87: *          unchanged, if double precision factorization has been used
                     88: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     89: *          array A contains the factor U or L from the Cholesky
                     90: *          factorization A = U**H*U or A = L*L**H.
                     91: *
                     92: *  LDA     (input) INTEGER
                     93: *          The leading dimension of the array A.  LDA >= max(1,N).
                     94: *
                     95: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     96: *          The N-by-NRHS right hand side matrix B.
                     97: *
                     98: *  LDB     (input) INTEGER
                     99: *          The leading dimension of the array B.  LDB >= max(1,N).
                    100: *
                    101: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                    102: *          If INFO = 0, the N-by-NRHS solution matrix X.
                    103: *
                    104: *  LDX     (input) INTEGER
                    105: *          The leading dimension of the array X.  LDX >= max(1,N).
                    106: *
                    107: *  WORK    (workspace) COMPLEX*16 array, dimension (N*NRHS)
                    108: *          This array is used to hold the residual vectors.
                    109: *
                    110: *  SWORK   (workspace) COMPLEX array, dimension (N*(N+NRHS))
                    111: *          This array is used to use the single precision matrix and the
                    112: *          right-hand sides or solutions in single precision.
                    113: *
                    114: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    115: *
                    116: *  ITER    (output) INTEGER
                    117: *          < 0: iterative refinement has failed, COMPLEX*16
                    118: *               factorization has been performed
                    119: *               -1 : the routine fell back to full precision for
                    120: *                    implementation- or machine-specific reasons
                    121: *               -2 : narrowing the precision induced an overflow,
                    122: *                    the routine fell back to full precision
                    123: *               -3 : failure of CPOTRF
                    124: *               -31: stop the iterative refinement after the 30th
                    125: *                    iterations
                    126: *          > 0: iterative refinement has been sucessfully used.
                    127: *               Returns the number of iterations
                    128: *
                    129: *  INFO    (output) INTEGER
                    130: *          = 0:  successful exit
                    131: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    132: *          > 0:  if INFO = i, the leading minor of order i of
                    133: *                (COMPLEX*16) A is not positive definite, so the
                    134: *                factorization could not be completed, and the solution
                    135: *                has not been computed.
                    136: *
                    137: *  =========
                    138: *
                    139: *     .. Parameters ..
                    140:       LOGICAL            DOITREF
                    141:       PARAMETER          ( DOITREF = .TRUE. )
                    142: *
                    143:       INTEGER            ITERMAX
                    144:       PARAMETER          ( ITERMAX = 30 )
                    145: *
                    146:       DOUBLE PRECISION   BWDMAX
                    147:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    148: *
                    149:       COMPLEX*16         NEGONE, ONE
                    150:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
                    151:      +                   ONE = ( 1.0D+00, 0.0D+00 ) )
                    152: *
                    153: *     .. Local Scalars ..
                    154:       INTEGER            I, IITER, PTSA, PTSX
                    155:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    156:       COMPLEX*16         ZDUM
                    157: *
                    158: *     .. External Subroutines ..
                    159:       EXTERNAL           ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
                    160:      +                   CPOTRF, CPOTRS, XERBLA
                    161: *     ..
                    162: *     .. External Functions ..
                    163:       INTEGER            IZAMAX
                    164:       DOUBLE PRECISION   DLAMCH, ZLANHE
                    165:       LOGICAL            LSAME
                    166:       EXTERNAL           IZAMAX, DLAMCH, ZLANHE, LSAME
                    167: *     ..
                    168: *     .. Intrinsic Functions ..
                    169:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    170: *     .. Statement Functions ..
                    171:       DOUBLE PRECISION   CABS1
                    172: *     ..
                    173: *     .. Statement Function definitions ..
                    174:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    175: *     ..
                    176: *     .. Executable Statements ..
                    177: *
                    178:       INFO = 0
                    179:       ITER = 0
                    180: *
                    181: *     Test the input parameters.
                    182: *
                    183:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
                    184:          INFO = -1
                    185:       ELSE IF( N.LT.0 ) THEN
                    186:          INFO = -2
                    187:       ELSE IF( NRHS.LT.0 ) THEN
                    188:          INFO = -3
                    189:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    190:          INFO = -5
                    191:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    192:          INFO = -7
                    193:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    194:          INFO = -9
                    195:       END IF
                    196:       IF( INFO.NE.0 ) THEN
                    197:          CALL XERBLA( 'ZCPOSV', -INFO )
                    198:          RETURN
                    199:       END IF
                    200: *
                    201: *     Quick return if (N.EQ.0).
                    202: *
                    203:       IF( N.EQ.0 )
                    204:      +   RETURN
                    205: *
                    206: *     Skip single precision iterative refinement if a priori slower
                    207: *     than double precision factorization.
                    208: *
                    209:       IF( .NOT.DOITREF ) THEN
                    210:          ITER = -1
                    211:          GO TO 40
                    212:       END IF
                    213: *
                    214: *     Compute some constants.
                    215: *
                    216:       ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
                    217:       EPS = DLAMCH( 'Epsilon' )
                    218:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    219: *
                    220: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    221: *
                    222:       PTSA = 1
                    223:       PTSX = PTSA + N*N
                    224: *
                    225: *     Convert B from double precision to single precision and store the
                    226: *     result in SX.
                    227: *
                    228:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    229: *
                    230:       IF( INFO.NE.0 ) THEN
                    231:          ITER = -2
                    232:          GO TO 40
                    233:       END IF
                    234: *
                    235: *     Convert A from double precision to single precision and store the
                    236: *     result in SA.
                    237: *
                    238:       CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
                    239: *
                    240:       IF( INFO.NE.0 ) THEN
                    241:          ITER = -2
                    242:          GO TO 40
                    243:       END IF
                    244: *
                    245: *     Compute the Cholesky factorization of SA.
                    246: *
                    247:       CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
                    248: *
                    249:       IF( INFO.NE.0 ) THEN
                    250:          ITER = -3
                    251:          GO TO 40
                    252:       END IF
                    253: *
                    254: *     Solve the system SA*SX = SB.
                    255: *
                    256:       CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
                    257:      +             INFO )
                    258: *
                    259: *     Convert SX back to COMPLEX*16
                    260: *
                    261:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    262: *
                    263: *     Compute R = B - AX (R is WORK).
                    264: *
                    265:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    266: *
                    267:       CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
                    268:      +            WORK, N )
                    269: *
                    270: *     Check whether the NRHS normwise backward errors satisfy the
                    271: *     stopping criterion. If yes, set ITER=0 and return.
                    272: *
                    273:       DO I = 1, NRHS
                    274:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    275:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    276:          IF( RNRM.GT.XNRM*CTE )
                    277:      +      GO TO 10
                    278:       END DO
                    279: *
                    280: *     If we are here, the NRHS normwise backward errors satisfy the
                    281: *     stopping criterion. We are good to exit.
                    282: *
                    283:       ITER = 0
                    284:       RETURN
                    285: *
                    286:    10 CONTINUE
                    287: *
                    288:       DO 30 IITER = 1, ITERMAX
                    289: *
                    290: *        Convert R (in WORK) from double precision to single precision
                    291: *        and store the result in SX.
                    292: *
                    293:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    294: *
                    295:          IF( INFO.NE.0 ) THEN
                    296:             ITER = -2
                    297:             GO TO 40
                    298:          END IF
                    299: *
                    300: *        Solve the system SA*SX = SR.
                    301: *
                    302:          CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
                    303:      +                INFO )
                    304: *
                    305: *        Convert SX back to double precision and update the current
                    306: *        iterate.
                    307: *
                    308:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    309: *
                    310:          DO I = 1, NRHS
                    311:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    312:          END DO
                    313: *
                    314: *        Compute R = B - AX (R is WORK).
                    315: *
                    316:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    317: *
                    318:          CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
                    319:      +               WORK, N )
                    320: *
                    321: *        Check whether the NRHS normwise backward errors satisfy the
                    322: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    323: *
                    324:          DO I = 1, NRHS
                    325:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    326:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    327:             IF( RNRM.GT.XNRM*CTE )
                    328:      +         GO TO 20
                    329:          END DO
                    330: *
                    331: *        If we are here, the NRHS normwise backward errors satisfy the
                    332: *        stopping criterion, we are good to exit.
                    333: *
                    334:          ITER = IITER
                    335: *
                    336:          RETURN
                    337: *
                    338:    20    CONTINUE
                    339: *
                    340:    30 CONTINUE
                    341: *
                    342: *     If we are at this place of the code, this is because we have
                    343: *     performed ITER=ITERMAX iterations and never satisified the
                    344: *     stopping criterion, set up the ITER flag accordingly and follow
                    345: *     up on double precision routine.
                    346: *
                    347:       ITER = -ITERMAX - 1
                    348: *
                    349:    40 CONTINUE
                    350: *
                    351: *     Single-precision iterative refinement failed to converge to a
                    352: *     satisfactory solution, so we resort to double precision.
                    353: *
                    354:       CALL ZPOTRF( UPLO, N, A, LDA, INFO )
                    355: *
                    356:       IF( INFO.NE.0 )
                    357:      +   RETURN
                    358: *
                    359:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    360:       CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
                    361: *
                    362:       RETURN
                    363: *
                    364: *     End of ZCPOSV.
                    365: *
                    366:       END

CVSweb interface <joel.bertrand@systella.fr>