File:  [local] / rpl / lapack / lapack / zcgesv.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Thu May 21 21:46:03 2020 UTC (3 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZCGESV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
   22: *                          SWORK, RWORK, ITER, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       INTEGER            IPIV( * )
   29: *       DOUBLE PRECISION   RWORK( * )
   30: *       COMPLEX            SWORK( * )
   31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
   32: *      $                   X( LDX, * )
   33: *       ..
   34: *
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> ZCGESV computes the solution to a complex system of linear equations
   42: *>    A * X = B,
   43: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
   44: *>
   45: *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
   46: *> factorization within an iterative refinement procedure to produce a
   47: *> solution with COMPLEX*16 normwise backward error quality (see below).
   48: *> If the approach fails the method switches to a COMPLEX*16
   49: *> factorization and solve.
   50: *>
   51: *> The iterative refinement is not going to be a winning strategy if
   52: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
   53: *> small. A reasonable strategy should take the number of right-hand
   54: *> sides and the size of the matrix into account. This might be done
   55: *> with a call to ILAENV in the future. Up to now, we always try
   56: *> iterative refinement.
   57: *>
   58: *> The iterative refinement process is stopped if
   59: *>     ITER > ITERMAX
   60: *> or for all the RHS we have:
   61: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
   62: *> where
   63: *>     o ITER is the number of the current iteration in the iterative
   64: *>       refinement process
   65: *>     o RNRM is the infinity-norm of the residual
   66: *>     o XNRM is the infinity-norm of the solution
   67: *>     o ANRM is the infinity-operator-norm of the matrix A
   68: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
   69: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
   70: *> respectively.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] N
   77: *> \verbatim
   78: *>          N is INTEGER
   79: *>          The number of linear equations, i.e., the order of the
   80: *>          matrix A.  N >= 0.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] NRHS
   84: *> \verbatim
   85: *>          NRHS is INTEGER
   86: *>          The number of right hand sides, i.e., the number of columns
   87: *>          of the matrix B.  NRHS >= 0.
   88: *> \endverbatim
   89: *>
   90: *> \param[in,out] A
   91: *> \verbatim
   92: *>          A is COMPLEX*16 array,
   93: *>          dimension (LDA,N)
   94: *>          On entry, the N-by-N coefficient matrix A.
   95: *>          On exit, if iterative refinement has been successfully used
   96: *>          (INFO = 0 and ITER >= 0, see description below), then A is
   97: *>          unchanged, if double precision factorization has been used
   98: *>          (INFO = 0 and ITER < 0, see description below), then the
   99: *>          array A contains the factors L and U from the factorization
  100: *>          A = P*L*U; the unit diagonal elements of L are not stored.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDA
  104: *> \verbatim
  105: *>          LDA is INTEGER
  106: *>          The leading dimension of the array A.  LDA >= max(1,N).
  107: *> \endverbatim
  108: *>
  109: *> \param[out] IPIV
  110: *> \verbatim
  111: *>          IPIV is INTEGER array, dimension (N)
  112: *>          The pivot indices that define the permutation matrix P;
  113: *>          row i of the matrix was interchanged with row IPIV(i).
  114: *>          Corresponds either to the single precision factorization
  115: *>          (if INFO = 0 and ITER >= 0) or the double precision
  116: *>          factorization (if INFO = 0 and ITER < 0).
  117: *> \endverbatim
  118: *>
  119: *> \param[in] B
  120: *> \verbatim
  121: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
  122: *>          The N-by-NRHS right hand side matrix B.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDB
  126: *> \verbatim
  127: *>          LDB is INTEGER
  128: *>          The leading dimension of the array B.  LDB >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] X
  132: *> \verbatim
  133: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
  134: *>          If INFO = 0, the N-by-NRHS solution matrix X.
  135: *> \endverbatim
  136: *>
  137: *> \param[in] LDX
  138: *> \verbatim
  139: *>          LDX is INTEGER
  140: *>          The leading dimension of the array X.  LDX >= max(1,N).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] WORK
  144: *> \verbatim
  145: *>          WORK is COMPLEX*16 array, dimension (N,NRHS)
  146: *>          This array is used to hold the residual vectors.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] SWORK
  150: *> \verbatim
  151: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
  152: *>          This array is used to use the single precision matrix and the
  153: *>          right-hand sides or solutions in single precision.
  154: *> \endverbatim
  155: *>
  156: *> \param[out] RWORK
  157: *> \verbatim
  158: *>          RWORK is DOUBLE PRECISION array, dimension (N)
  159: *> \endverbatim
  160: *>
  161: *> \param[out] ITER
  162: *> \verbatim
  163: *>          ITER is INTEGER
  164: *>          < 0: iterative refinement has failed, COMPLEX*16
  165: *>               factorization has been performed
  166: *>               -1 : the routine fell back to full precision for
  167: *>                    implementation- or machine-specific reasons
  168: *>               -2 : narrowing the precision induced an overflow,
  169: *>                    the routine fell back to full precision
  170: *>               -3 : failure of CGETRF
  171: *>               -31: stop the iterative refinement after the 30th
  172: *>                    iterations
  173: *>          > 0: iterative refinement has been successfully used.
  174: *>               Returns the number of iterations
  175: *> \endverbatim
  176: *>
  177: *> \param[out] INFO
  178: *> \verbatim
  179: *>          INFO is INTEGER
  180: *>          = 0:  successful exit
  181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  182: *>          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
  183: *>                zero.  The factorization has been completed, but the
  184: *>                factor U is exactly singular, so the solution
  185: *>                could not be computed.
  186: *> \endverbatim
  187: *
  188: *  Authors:
  189: *  ========
  190: *
  191: *> \author Univ. of Tennessee
  192: *> \author Univ. of California Berkeley
  193: *> \author Univ. of Colorado Denver
  194: *> \author NAG Ltd.
  195: *
  196: *> \date June 2016
  197: *
  198: *> \ingroup complex16GEsolve
  199: *
  200: *  =====================================================================
  201:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  202:      $                   SWORK, RWORK, ITER, INFO )
  203: *
  204: *  -- LAPACK driver routine (version 3.8.0) --
  205: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  206: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  207: *     June 2016
  208: *
  209: *     .. Scalar Arguments ..
  210:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
  211: *     ..
  212: *     .. Array Arguments ..
  213:       INTEGER            IPIV( * )
  214:       DOUBLE PRECISION   RWORK( * )
  215:       COMPLEX            SWORK( * )
  216:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
  217:      $                   X( LDX, * )
  218: *     ..
  219: *
  220: *  =====================================================================
  221: *
  222: *     .. Parameters ..
  223:       LOGICAL            DOITREF
  224:       PARAMETER          ( DOITREF = .TRUE. )
  225: *
  226:       INTEGER            ITERMAX
  227:       PARAMETER          ( ITERMAX = 30 )
  228: *
  229:       DOUBLE PRECISION   BWDMAX
  230:       PARAMETER          ( BWDMAX = 1.0E+00 )
  231: *
  232:       COMPLEX*16         NEGONE, ONE
  233:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  234:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
  235: *
  236: *     .. Local Scalars ..
  237:       INTEGER            I, IITER, PTSA, PTSX
  238:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
  239:       COMPLEX*16         ZDUM
  240: *
  241: *     .. External Subroutines ..
  242:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
  243:      $                   ZLACPY, ZLAG2C, ZGETRF, ZGETRS
  244: *     ..
  245: *     .. External Functions ..
  246:       INTEGER            IZAMAX
  247:       DOUBLE PRECISION   DLAMCH, ZLANGE
  248:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
  249: *     ..
  250: *     .. Intrinsic Functions ..
  251:       INTRINSIC          ABS, DBLE, MAX, SQRT
  252: *     ..
  253: *     .. Statement Functions ..
  254:       DOUBLE PRECISION   CABS1
  255: *     ..
  256: *     .. Statement Function definitions ..
  257:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  258: *     ..
  259: *     .. Executable Statements ..
  260: *
  261:       INFO = 0
  262:       ITER = 0
  263: *
  264: *     Test the input parameters.
  265: *
  266:       IF( N.LT.0 ) THEN
  267:          INFO = -1
  268:       ELSE IF( NRHS.LT.0 ) THEN
  269:          INFO = -2
  270:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  271:          INFO = -4
  272:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  273:          INFO = -7
  274:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  275:          INFO = -9
  276:       END IF
  277:       IF( INFO.NE.0 ) THEN
  278:          CALL XERBLA( 'ZCGESV', -INFO )
  279:          RETURN
  280:       END IF
  281: *
  282: *     Quick return if (N.EQ.0).
  283: *
  284:       IF( N.EQ.0 )
  285:      $   RETURN
  286: *
  287: *     Skip single precision iterative refinement if a priori slower
  288: *     than double precision factorization.
  289: *
  290:       IF( .NOT.DOITREF ) THEN
  291:          ITER = -1
  292:          GO TO 40
  293:       END IF
  294: *
  295: *     Compute some constants.
  296: *
  297:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
  298:       EPS = DLAMCH( 'Epsilon' )
  299:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  300: *
  301: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  302: *
  303:       PTSA = 1
  304:       PTSX = PTSA + N*N
  305: *
  306: *     Convert B from double precision to single precision and store the
  307: *     result in SX.
  308: *
  309:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  310: *
  311:       IF( INFO.NE.0 ) THEN
  312:          ITER = -2
  313:          GO TO 40
  314:       END IF
  315: *
  316: *     Convert A from double precision to single precision and store the
  317: *     result in SA.
  318: *
  319:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
  320: *
  321:       IF( INFO.NE.0 ) THEN
  322:          ITER = -2
  323:          GO TO 40
  324:       END IF
  325: *
  326: *     Compute the LU factorization of SA.
  327: *
  328:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
  329: *
  330:       IF( INFO.NE.0 ) THEN
  331:          ITER = -3
  332:          GO TO 40
  333:       END IF
  334: *
  335: *     Solve the system SA*SX = SB.
  336: *
  337:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  338:      $             SWORK( PTSX ), N, INFO )
  339: *
  340: *     Convert SX back to double precision
  341: *
  342:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  343: *
  344: *     Compute R = B - AX (R is WORK).
  345: *
  346:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  347: *
  348:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
  349:      $            LDA, X, LDX, ONE, WORK, N )
  350: *
  351: *     Check whether the NRHS normwise backward errors satisfy the
  352: *     stopping criterion. If yes, set ITER=0 and return.
  353: *
  354:       DO I = 1, NRHS
  355:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  356:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  357:          IF( RNRM.GT.XNRM*CTE )
  358:      $      GO TO 10
  359:       END DO
  360: *
  361: *     If we are here, the NRHS normwise backward errors satisfy the
  362: *     stopping criterion. We are good to exit.
  363: *
  364:       ITER = 0
  365:       RETURN
  366: *
  367:    10 CONTINUE
  368: *
  369:       DO 30 IITER = 1, ITERMAX
  370: *
  371: *        Convert R (in WORK) from double precision to single precision
  372: *        and store the result in SX.
  373: *
  374:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  375: *
  376:          IF( INFO.NE.0 ) THEN
  377:             ITER = -2
  378:             GO TO 40
  379:          END IF
  380: *
  381: *        Solve the system SA*SX = SR.
  382: *
  383:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  384:      $                SWORK( PTSX ), N, INFO )
  385: *
  386: *        Convert SX back to double precision and update the current
  387: *        iterate.
  388: *
  389:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  390: *
  391:          DO I = 1, NRHS
  392:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  393:          END DO
  394: *
  395: *        Compute R = B - AX (R is WORK).
  396: *
  397:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  398: *
  399:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
  400:      $               A, LDA, X, LDX, ONE, WORK, N )
  401: *
  402: *        Check whether the NRHS normwise backward errors satisfy the
  403: *        stopping criterion. If yes, set ITER=IITER>0 and return.
  404: *
  405:          DO I = 1, NRHS
  406:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  407:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  408:             IF( RNRM.GT.XNRM*CTE )
  409:      $         GO TO 20
  410:          END DO
  411: *
  412: *        If we are here, the NRHS normwise backward errors satisfy the
  413: *        stopping criterion, we are good to exit.
  414: *
  415:          ITER = IITER
  416: *
  417:          RETURN
  418: *
  419:    20    CONTINUE
  420: *
  421:    30 CONTINUE
  422: *
  423: *     If we are at this place of the code, this is because we have
  424: *     performed ITER=ITERMAX iterations and never satisfied the stopping
  425: *     criterion, set up the ITER flag accordingly and follow up on double
  426: *     precision routine.
  427: *
  428:       ITER = -ITERMAX - 1
  429: *
  430:    40 CONTINUE
  431: *
  432: *     Single-precision iterative refinement failed to converge to a
  433: *     satisfactory solution, so we resort to double precision.
  434: *
  435:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
  436: *
  437:       IF( INFO.NE.0 )
  438:      $   RETURN
  439: *
  440:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  441:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
  442:      $             INFO )
  443: *
  444:       RETURN
  445: *
  446: *     End of ZCGESV.
  447: *
  448:       END

CVSweb interface <joel.bertrand@systella.fr>