Annotation of rpl/lapack/lapack/zcgesv.f, revision 1.8

1.1       bertrand    1:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
                      2:      +                   SWORK, RWORK, ITER, INFO )
                      3: *
1.5       bertrand    4: *  -- LAPACK PROTOTYPE driver routine (version 3.2.2) --
1.1       bertrand    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     January 2007
                      8: *
                      9: *     ..
                     10: *     .. Scalar Arguments ..
                     11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            IPIV( * )
                     15:       DOUBLE PRECISION   RWORK( * )
                     16:       COMPLEX            SWORK( * )
                     17:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     18:      +                   X( LDX, * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  ZCGESV computes the solution to a complex system of linear equations
                     25: *     A * X = B,
                     26: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     27: *
                     28: *  ZCGESV first attempts to factorize the matrix in COMPLEX and use this
                     29: *  factorization within an iterative refinement procedure to produce a
                     30: *  solution with COMPLEX*16 normwise backward error quality (see below).
                     31: *  If the approach fails the method switches to a COMPLEX*16
                     32: *  factorization and solve.
                     33: *
                     34: *  The iterative refinement is not going to be a winning strategy if
                     35: *  the ratio COMPLEX performance over COMPLEX*16 performance is too
                     36: *  small. A reasonable strategy should take the number of right-hand
                     37: *  sides and the size of the matrix into account. This might be done
                     38: *  with a call to ILAENV in the future. Up to now, we always try
                     39: *  iterative refinement.
                     40: *
                     41: *  The iterative refinement process is stopped if
                     42: *      ITER > ITERMAX
                     43: *  or for all the RHS we have:
                     44: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     45: *  where
                     46: *      o ITER is the number of the current iteration in the iterative
                     47: *        refinement process
                     48: *      o RNRM is the infinity-norm of the residual
                     49: *      o XNRM is the infinity-norm of the solution
                     50: *      o ANRM is the infinity-operator-norm of the matrix A
                     51: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     52: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     53: *  respectively.
                     54: *
                     55: *  Arguments
                     56: *  =========
                     57: *
                     58: *  N       (input) INTEGER
                     59: *          The number of linear equations, i.e., the order of the
                     60: *          matrix A.  N >= 0.
                     61: *
                     62: *  NRHS    (input) INTEGER
                     63: *          The number of right hand sides, i.e., the number of columns
                     64: *          of the matrix B.  NRHS >= 0.
                     65: *
1.5       bertrand   66: *  A       (input/output) COMPLEX*16 array,
1.1       bertrand   67: *          dimension (LDA,N)
                     68: *          On entry, the N-by-N coefficient matrix A.
                     69: *          On exit, if iterative refinement has been successfully used
                     70: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     71: *          unchanged, if double precision factorization has been used
                     72: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     73: *          array A contains the factors L and U from the factorization
                     74: *          A = P*L*U; the unit diagonal elements of L are not stored.
                     75: *
                     76: *  LDA     (input) INTEGER
                     77: *          The leading dimension of the array A.  LDA >= max(1,N).
                     78: *
                     79: *  IPIV    (output) INTEGER array, dimension (N)
                     80: *          The pivot indices that define the permutation matrix P;
                     81: *          row i of the matrix was interchanged with row IPIV(i).
                     82: *          Corresponds either to the single precision factorization
                     83: *          (if INFO.EQ.0 and ITER.GE.0) or the double precision
                     84: *          factorization (if INFO.EQ.0 and ITER.LT.0).
                     85: *
                     86: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
                     87: *          The N-by-NRHS right hand side matrix B.
                     88: *
                     89: *  LDB     (input) INTEGER
                     90: *          The leading dimension of the array B.  LDB >= max(1,N).
                     91: *
                     92: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
                     93: *          If INFO = 0, the N-by-NRHS solution matrix X.
                     94: *
                     95: *  LDX     (input) INTEGER
                     96: *          The leading dimension of the array X.  LDX >= max(1,N).
                     97: *
                     98: *  WORK    (workspace) COMPLEX*16 array, dimension (N*NRHS)
                     99: *          This array is used to hold the residual vectors.
                    100: *
                    101: *  SWORK   (workspace) COMPLEX array, dimension (N*(N+NRHS))
                    102: *          This array is used to use the single precision matrix and the
                    103: *          right-hand sides or solutions in single precision.
                    104: *
                    105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
                    106: *
                    107: *  ITER    (output) INTEGER
                    108: *          < 0: iterative refinement has failed, COMPLEX*16
                    109: *               factorization has been performed
                    110: *               -1 : the routine fell back to full precision for
                    111: *                    implementation- or machine-specific reasons
                    112: *               -2 : narrowing the precision induced an overflow,
                    113: *                    the routine fell back to full precision
                    114: *               -3 : failure of CGETRF
                    115: *               -31: stop the iterative refinement after the 30th
                    116: *                    iterations
                    117: *          > 0: iterative refinement has been sucessfully used.
                    118: *               Returns the number of iterations
                    119: *
                    120: *  INFO    (output) INTEGER
                    121: *          = 0:  successful exit
                    122: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    123: *          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
                    124: *                zero.  The factorization has been completed, but the
                    125: *                factor U is exactly singular, so the solution
                    126: *                could not be computed.
                    127: *
                    128: *  =========
                    129: *
                    130: *     .. Parameters ..
                    131:       LOGICAL            DOITREF
                    132:       PARAMETER          ( DOITREF = .TRUE. )
                    133: *
                    134:       INTEGER            ITERMAX
                    135:       PARAMETER          ( ITERMAX = 30 )
                    136: *
                    137:       DOUBLE PRECISION   BWDMAX
                    138:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    139: *
                    140:       COMPLEX*16         NEGONE, ONE
                    141:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
                    142:      +                   ONE = ( 1.0D+00, 0.0D+00 ) )
                    143: *
                    144: *     .. Local Scalars ..
                    145:       INTEGER            I, IITER, PTSA, PTSX
                    146:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    147:       COMPLEX*16         ZDUM
                    148: *
                    149: *     .. External Subroutines ..
                    150:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
                    151:      +                   ZLACPY, ZLAG2C
                    152: *     ..
                    153: *     .. External Functions ..
                    154:       INTEGER            IZAMAX
                    155:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    156:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
                    157: *     ..
                    158: *     .. Intrinsic Functions ..
                    159:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    160: *     ..
                    161: *     .. Statement Functions ..
                    162:       DOUBLE PRECISION   CABS1
                    163: *     ..
                    164: *     .. Statement Function definitions ..
                    165:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    166: *     ..
                    167: *     .. Executable Statements ..
                    168: *
                    169:       INFO = 0
                    170:       ITER = 0
                    171: *
                    172: *     Test the input parameters.
                    173: *
                    174:       IF( N.LT.0 ) THEN
                    175:          INFO = -1
                    176:       ELSE IF( NRHS.LT.0 ) THEN
                    177:          INFO = -2
                    178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    179:          INFO = -4
                    180:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    181:          INFO = -7
                    182:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    183:          INFO = -9
                    184:       END IF
                    185:       IF( INFO.NE.0 ) THEN
                    186:          CALL XERBLA( 'ZCGESV', -INFO )
                    187:          RETURN
                    188:       END IF
                    189: *
                    190: *     Quick return if (N.EQ.0).
                    191: *
                    192:       IF( N.EQ.0 )
                    193:      +   RETURN
                    194: *
                    195: *     Skip single precision iterative refinement if a priori slower
                    196: *     than double precision factorization.
                    197: *
                    198:       IF( .NOT.DOITREF ) THEN
                    199:          ITER = -1
                    200:          GO TO 40
                    201:       END IF
                    202: *
                    203: *     Compute some constants.
                    204: *
                    205:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
                    206:       EPS = DLAMCH( 'Epsilon' )
                    207:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    208: *
                    209: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    210: *
                    211:       PTSA = 1
                    212:       PTSX = PTSA + N*N
                    213: *
                    214: *     Convert B from double precision to single precision and store the
                    215: *     result in SX.
                    216: *
                    217:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    218: *
                    219:       IF( INFO.NE.0 ) THEN
                    220:          ITER = -2
                    221:          GO TO 40
                    222:       END IF
                    223: *
                    224: *     Convert A from double precision to single precision and store the
                    225: *     result in SA.
                    226: *
                    227:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    228: *
                    229:       IF( INFO.NE.0 ) THEN
                    230:          ITER = -2
                    231:          GO TO 40
                    232:       END IF
                    233: *
                    234: *     Compute the LU factorization of SA.
                    235: *
                    236:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    237: *
                    238:       IF( INFO.NE.0 ) THEN
                    239:          ITER = -3
                    240:          GO TO 40
                    241:       END IF
                    242: *
                    243: *     Solve the system SA*SX = SB.
                    244: *
                    245:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
                    246:      +             SWORK( PTSX ), N, INFO )
                    247: *
                    248: *     Convert SX back to double precision
                    249: *
                    250:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    251: *
                    252: *     Compute R = B - AX (R is WORK).
                    253: *
                    254:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    255: *
                    256:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
                    257:      +            LDA, X, LDX, ONE, WORK, N )
                    258: *
                    259: *     Check whether the NRHS normwise backward errors satisfy the
                    260: *     stopping criterion. If yes, set ITER=0 and return.
                    261: *
                    262:       DO I = 1, NRHS
                    263:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    264:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    265:          IF( RNRM.GT.XNRM*CTE )
                    266:      +      GO TO 10
                    267:       END DO
                    268: *
                    269: *     If we are here, the NRHS normwise backward errors satisfy the
                    270: *     stopping criterion. We are good to exit.
                    271: *
                    272:       ITER = 0
                    273:       RETURN
                    274: *
                    275:    10 CONTINUE
                    276: *
                    277:       DO 30 IITER = 1, ITERMAX
                    278: *
                    279: *        Convert R (in WORK) from double precision to single precision
                    280: *        and store the result in SX.
                    281: *
                    282:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    283: *
                    284:          IF( INFO.NE.0 ) THEN
                    285:             ITER = -2
                    286:             GO TO 40
                    287:          END IF
                    288: *
                    289: *        Solve the system SA*SX = SR.
                    290: *
                    291:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
                    292:      +                SWORK( PTSX ), N, INFO )
                    293: *
                    294: *        Convert SX back to double precision and update the current
                    295: *        iterate.
                    296: *
                    297:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    298: *
                    299:          DO I = 1, NRHS
                    300:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    301:          END DO
                    302: *
                    303: *        Compute R = B - AX (R is WORK).
                    304: *
                    305:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    306: *
                    307:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
                    308:      +               A, LDA, X, LDX, ONE, WORK, N )
                    309: *
                    310: *        Check whether the NRHS normwise backward errors satisfy the
                    311: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    312: *
                    313:          DO I = 1, NRHS
                    314:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    315:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    316:             IF( RNRM.GT.XNRM*CTE )
                    317:      +         GO TO 20
                    318:          END DO
                    319: *
                    320: *        If we are here, the NRHS normwise backward errors satisfy the
                    321: *        stopping criterion, we are good to exit.
                    322: *
                    323:          ITER = IITER
                    324: *
                    325:          RETURN
                    326: *
                    327:    20    CONTINUE
                    328: *
                    329:    30 CONTINUE
                    330: *
                    331: *     If we are at this place of the code, this is because we have
                    332: *     performed ITER=ITERMAX iterations and never satisified the stopping
                    333: *     criterion, set up the ITER flag accordingly and follow up on double
                    334: *     precision routine.
                    335: *
                    336:       ITER = -ITERMAX - 1
                    337: *
                    338:    40 CONTINUE
                    339: *
                    340: *     Single-precision iterative refinement failed to converge to a
                    341: *     satisfactory solution, so we resort to double precision.
                    342: *
                    343:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
                    344: *
                    345:       IF( INFO.NE.0 )
                    346:      +   RETURN
                    347: *
                    348:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    349:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
                    350:      +             INFO )
                    351: *
                    352:       RETURN
                    353: *
                    354: *     End of ZCGESV.
                    355: *
                    356:       END

CVSweb interface <joel.bertrand@systella.fr>