Annotation of rpl/lapack/lapack/zcgesv.f, revision 1.17

1.10      bertrand    1: *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.17    ! bertrand    5: * Online html documentation available at
        !             6: *            http://www.netlib.org/lapack/explore-html/
1.10      bertrand    7: *
                      8: *> \htmlonly
1.17    ! bertrand    9: *> Download ZCGESV + dependencies
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
        !            11: *> [TGZ]</a>
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
        !            13: *> [ZIP]</a>
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
1.10      bertrand   15: *> [TXT]</a>
1.17    ! bertrand   16: *> \endhtmlonly
1.10      bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
                     22: *                          SWORK, RWORK, ITER, INFO )
1.17    ! bertrand   23: *
1.10      bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       INTEGER            IPIV( * )
                     29: *       DOUBLE PRECISION   RWORK( * )
                     30: *       COMPLEX            SWORK( * )
                     31: *       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
                     32: *      $                   X( LDX, * )
                     33: *       ..
1.17    ! bertrand   34: *
1.10      bertrand   35: *
                     36: *> \par Purpose:
                     37: *  =============
                     38: *>
                     39: *> \verbatim
                     40: *>
                     41: *> ZCGESV computes the solution to a complex system of linear equations
                     42: *>    A * X = B,
                     43: *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
                     44: *>
                     45: *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
                     46: *> factorization within an iterative refinement procedure to produce a
                     47: *> solution with COMPLEX*16 normwise backward error quality (see below).
                     48: *> If the approach fails the method switches to a COMPLEX*16
                     49: *> factorization and solve.
                     50: *>
                     51: *> The iterative refinement is not going to be a winning strategy if
                     52: *> the ratio COMPLEX performance over COMPLEX*16 performance is too
                     53: *> small. A reasonable strategy should take the number of right-hand
                     54: *> sides and the size of the matrix into account. This might be done
                     55: *> with a call to ILAENV in the future. Up to now, we always try
                     56: *> iterative refinement.
                     57: *>
                     58: *> The iterative refinement process is stopped if
                     59: *>     ITER > ITERMAX
                     60: *> or for all the RHS we have:
                     61: *>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
                     62: *> where
                     63: *>     o ITER is the number of the current iteration in the iterative
                     64: *>       refinement process
                     65: *>     o RNRM is the infinity-norm of the residual
                     66: *>     o XNRM is the infinity-norm of the solution
                     67: *>     o ANRM is the infinity-operator-norm of the matrix A
                     68: *>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
                     69: *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
                     70: *> respectively.
                     71: *> \endverbatim
                     72: *
                     73: *  Arguments:
                     74: *  ==========
                     75: *
                     76: *> \param[in] N
                     77: *> \verbatim
                     78: *>          N is INTEGER
                     79: *>          The number of linear equations, i.e., the order of the
                     80: *>          matrix A.  N >= 0.
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] NRHS
                     84: *> \verbatim
                     85: *>          NRHS is INTEGER
                     86: *>          The number of right hand sides, i.e., the number of columns
                     87: *>          of the matrix B.  NRHS >= 0.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[in,out] A
                     91: *> \verbatim
                     92: *>          A is COMPLEX*16 array,
                     93: *>          dimension (LDA,N)
                     94: *>          On entry, the N-by-N coefficient matrix A.
                     95: *>          On exit, if iterative refinement has been successfully used
                     96: *>          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
                     97: *>          unchanged, if double precision factorization has been used
                     98: *>          (INFO.EQ.0 and ITER.LT.0, see description below), then the
                     99: *>          array A contains the factors L and U from the factorization
                    100: *>          A = P*L*U; the unit diagonal elements of L are not stored.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDA
                    104: *> \verbatim
                    105: *>          LDA is INTEGER
                    106: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] IPIV
                    110: *> \verbatim
                    111: *>          IPIV is INTEGER array, dimension (N)
                    112: *>          The pivot indices that define the permutation matrix P;
                    113: *>          row i of the matrix was interchanged with row IPIV(i).
                    114: *>          Corresponds either to the single precision factorization
                    115: *>          (if INFO.EQ.0 and ITER.GE.0) or the double precision
                    116: *>          factorization (if INFO.EQ.0 and ITER.LT.0).
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] B
                    120: *> \verbatim
                    121: *>          B is COMPLEX*16 array, dimension (LDB,NRHS)
                    122: *>          The N-by-NRHS right hand side matrix B.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in] LDB
                    126: *> \verbatim
                    127: *>          LDB is INTEGER
                    128: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] X
                    132: *> \verbatim
                    133: *>          X is COMPLEX*16 array, dimension (LDX,NRHS)
                    134: *>          If INFO = 0, the N-by-NRHS solution matrix X.
                    135: *> \endverbatim
                    136: *>
                    137: *> \param[in] LDX
                    138: *> \verbatim
                    139: *>          LDX is INTEGER
                    140: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] WORK
                    144: *> \verbatim
                    145: *>          WORK is COMPLEX*16 array, dimension (N*NRHS)
                    146: *>          This array is used to hold the residual vectors.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[out] SWORK
                    150: *> \verbatim
                    151: *>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
                    152: *>          This array is used to use the single precision matrix and the
                    153: *>          right-hand sides or solutions in single precision.
                    154: *> \endverbatim
                    155: *>
                    156: *> \param[out] RWORK
                    157: *> \verbatim
                    158: *>          RWORK is DOUBLE PRECISION array, dimension (N)
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] ITER
                    162: *> \verbatim
                    163: *>          ITER is INTEGER
                    164: *>          < 0: iterative refinement has failed, COMPLEX*16
                    165: *>               factorization has been performed
                    166: *>               -1 : the routine fell back to full precision for
                    167: *>                    implementation- or machine-specific reasons
                    168: *>               -2 : narrowing the precision induced an overflow,
                    169: *>                    the routine fell back to full precision
                    170: *>               -3 : failure of CGETRF
                    171: *>               -31: stop the iterative refinement after the 30th
                    172: *>                    iterations
1.15      bertrand  173: *>          > 0: iterative refinement has been successfully used.
1.10      bertrand  174: *>               Returns the number of iterations
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0:  successful exit
                    181: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    182: *>          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
                    183: *>                zero.  The factorization has been completed, but the
                    184: *>                factor U is exactly singular, so the solution
                    185: *>                could not be computed.
                    186: *> \endverbatim
                    187: *
                    188: *  Authors:
                    189: *  ========
                    190: *
1.17    ! bertrand  191: *> \author Univ. of Tennessee
        !           192: *> \author Univ. of California Berkeley
        !           193: *> \author Univ. of Colorado Denver
        !           194: *> \author NAG Ltd.
1.10      bertrand  195: *
1.15      bertrand  196: *> \date June 2016
1.10      bertrand  197: *
                    198: *> \ingroup complex16GEsolve
                    199: *
                    200: *  =====================================================================
1.1       bertrand  201:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
1.9       bertrand  202:      $                   SWORK, RWORK, ITER, INFO )
1.1       bertrand  203: *
1.17    ! bertrand  204: *  -- LAPACK driver routine (version 3.7.0) --
1.1       bertrand  205: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    206: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.15      bertrand  207: *     June 2016
1.1       bertrand  208: *
                    209: *     .. Scalar Arguments ..
                    210:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
                    211: *     ..
                    212: *     .. Array Arguments ..
                    213:       INTEGER            IPIV( * )
                    214:       DOUBLE PRECISION   RWORK( * )
                    215:       COMPLEX            SWORK( * )
                    216:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
1.9       bertrand  217:      $                   X( LDX, * )
1.1       bertrand  218: *     ..
                    219: *
1.9       bertrand  220: *  =====================================================================
1.1       bertrand  221: *
                    222: *     .. Parameters ..
                    223:       LOGICAL            DOITREF
                    224:       PARAMETER          ( DOITREF = .TRUE. )
                    225: *
                    226:       INTEGER            ITERMAX
                    227:       PARAMETER          ( ITERMAX = 30 )
                    228: *
                    229:       DOUBLE PRECISION   BWDMAX
                    230:       PARAMETER          ( BWDMAX = 1.0E+00 )
                    231: *
                    232:       COMPLEX*16         NEGONE, ONE
                    233:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
1.9       bertrand  234:      $                   ONE = ( 1.0D+00, 0.0D+00 ) )
1.1       bertrand  235: *
                    236: *     .. Local Scalars ..
                    237:       INTEGER            I, IITER, PTSA, PTSX
                    238:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
                    239:       COMPLEX*16         ZDUM
                    240: *
                    241: *     .. External Subroutines ..
                    242:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
1.9       bertrand  243:      $                   ZLACPY, ZLAG2C
1.1       bertrand  244: *     ..
                    245: *     .. External Functions ..
                    246:       INTEGER            IZAMAX
                    247:       DOUBLE PRECISION   DLAMCH, ZLANGE
                    248:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
                    249: *     ..
                    250: *     .. Intrinsic Functions ..
                    251:       INTRINSIC          ABS, DBLE, MAX, SQRT
                    252: *     ..
                    253: *     .. Statement Functions ..
                    254:       DOUBLE PRECISION   CABS1
                    255: *     ..
                    256: *     .. Statement Function definitions ..
                    257:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
                    258: *     ..
                    259: *     .. Executable Statements ..
                    260: *
                    261:       INFO = 0
                    262:       ITER = 0
                    263: *
                    264: *     Test the input parameters.
                    265: *
                    266:       IF( N.LT.0 ) THEN
                    267:          INFO = -1
                    268:       ELSE IF( NRHS.LT.0 ) THEN
                    269:          INFO = -2
                    270:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    271:          INFO = -4
                    272:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    273:          INFO = -7
                    274:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    275:          INFO = -9
                    276:       END IF
                    277:       IF( INFO.NE.0 ) THEN
                    278:          CALL XERBLA( 'ZCGESV', -INFO )
                    279:          RETURN
                    280:       END IF
                    281: *
                    282: *     Quick return if (N.EQ.0).
                    283: *
                    284:       IF( N.EQ.0 )
1.9       bertrand  285:      $   RETURN
1.1       bertrand  286: *
                    287: *     Skip single precision iterative refinement if a priori slower
                    288: *     than double precision factorization.
                    289: *
                    290:       IF( .NOT.DOITREF ) THEN
                    291:          ITER = -1
                    292:          GO TO 40
                    293:       END IF
                    294: *
                    295: *     Compute some constants.
                    296: *
                    297:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
                    298:       EPS = DLAMCH( 'Epsilon' )
                    299:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
                    300: *
                    301: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
                    302: *
                    303:       PTSA = 1
                    304:       PTSX = PTSA + N*N
                    305: *
                    306: *     Convert B from double precision to single precision and store the
                    307: *     result in SX.
                    308: *
                    309:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
                    310: *
                    311:       IF( INFO.NE.0 ) THEN
                    312:          ITER = -2
                    313:          GO TO 40
                    314:       END IF
                    315: *
                    316: *     Convert A from double precision to single precision and store the
                    317: *     result in SA.
                    318: *
                    319:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
                    320: *
                    321:       IF( INFO.NE.0 ) THEN
                    322:          ITER = -2
                    323:          GO TO 40
                    324:       END IF
                    325: *
                    326: *     Compute the LU factorization of SA.
                    327: *
                    328:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
                    329: *
                    330:       IF( INFO.NE.0 ) THEN
                    331:          ITER = -3
                    332:          GO TO 40
                    333:       END IF
                    334: *
                    335: *     Solve the system SA*SX = SB.
                    336: *
                    337:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  338:      $             SWORK( PTSX ), N, INFO )
1.1       bertrand  339: *
                    340: *     Convert SX back to double precision
                    341: *
                    342:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
                    343: *
                    344: *     Compute R = B - AX (R is WORK).
                    345: *
                    346:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    347: *
                    348:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
1.9       bertrand  349:      $            LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  350: *
                    351: *     Check whether the NRHS normwise backward errors satisfy the
                    352: *     stopping criterion. If yes, set ITER=0 and return.
                    353: *
                    354:       DO I = 1, NRHS
                    355:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    356:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    357:          IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  358:      $      GO TO 10
1.1       bertrand  359:       END DO
                    360: *
                    361: *     If we are here, the NRHS normwise backward errors satisfy the
                    362: *     stopping criterion. We are good to exit.
                    363: *
                    364:       ITER = 0
                    365:       RETURN
                    366: *
                    367:    10 CONTINUE
                    368: *
                    369:       DO 30 IITER = 1, ITERMAX
                    370: *
                    371: *        Convert R (in WORK) from double precision to single precision
                    372: *        and store the result in SX.
                    373: *
                    374:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
                    375: *
                    376:          IF( INFO.NE.0 ) THEN
                    377:             ITER = -2
                    378:             GO TO 40
                    379:          END IF
                    380: *
                    381: *        Solve the system SA*SX = SR.
                    382: *
                    383:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
1.9       bertrand  384:      $                SWORK( PTSX ), N, INFO )
1.1       bertrand  385: *
                    386: *        Convert SX back to double precision and update the current
                    387: *        iterate.
                    388: *
                    389:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
                    390: *
                    391:          DO I = 1, NRHS
                    392:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
                    393:          END DO
                    394: *
                    395: *        Compute R = B - AX (R is WORK).
                    396: *
                    397:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
                    398: *
                    399:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
1.9       bertrand  400:      $               A, LDA, X, LDX, ONE, WORK, N )
1.1       bertrand  401: *
                    402: *        Check whether the NRHS normwise backward errors satisfy the
                    403: *        stopping criterion. If yes, set ITER=IITER>0 and return.
                    404: *
                    405:          DO I = 1, NRHS
                    406:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
                    407:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
                    408:             IF( RNRM.GT.XNRM*CTE )
1.9       bertrand  409:      $         GO TO 20
1.1       bertrand  410:          END DO
                    411: *
                    412: *        If we are here, the NRHS normwise backward errors satisfy the
                    413: *        stopping criterion, we are good to exit.
                    414: *
                    415:          ITER = IITER
                    416: *
                    417:          RETURN
                    418: *
                    419:    20    CONTINUE
                    420: *
                    421:    30 CONTINUE
                    422: *
                    423: *     If we are at this place of the code, this is because we have
                    424: *     performed ITER=ITERMAX iterations and never satisified the stopping
                    425: *     criterion, set up the ITER flag accordingly and follow up on double
                    426: *     precision routine.
                    427: *
                    428:       ITER = -ITERMAX - 1
                    429: *
                    430:    40 CONTINUE
                    431: *
                    432: *     Single-precision iterative refinement failed to converge to a
                    433: *     satisfactory solution, so we resort to double precision.
                    434: *
                    435:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
                    436: *
                    437:       IF( INFO.NE.0 )
1.9       bertrand  438:      $   RETURN
1.1       bertrand  439: *
                    440:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
                    441:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
1.9       bertrand  442:      $             INFO )
1.1       bertrand  443: *
                    444:       RETURN
                    445: *
                    446: *     End of ZCGESV.
                    447: *
                    448:       END

CVSweb interface <joel.bertrand@systella.fr>