Annotation of rpl/lapack/lapack/zcgesv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
        !             2:      +                   SWORK, RWORK, ITER, INFO )
        !             3: *
        !             4: *  -- LAPACK PROTOTYPE driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     January 2007
        !             8: *
        !             9: *     ..
        !            10: *     .. Scalar Arguments ..
        !            11:       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IPIV( * )
        !            15:       DOUBLE PRECISION   RWORK( * )
        !            16:       COMPLEX            SWORK( * )
        !            17:       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
        !            18:      +                   X( LDX, * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  ZCGESV computes the solution to a complex system of linear equations
        !            25: *     A * X = B,
        !            26: *  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
        !            27: *
        !            28: *  ZCGESV first attempts to factorize the matrix in COMPLEX and use this
        !            29: *  factorization within an iterative refinement procedure to produce a
        !            30: *  solution with COMPLEX*16 normwise backward error quality (see below).
        !            31: *  If the approach fails the method switches to a COMPLEX*16
        !            32: *  factorization and solve.
        !            33: *
        !            34: *  The iterative refinement is not going to be a winning strategy if
        !            35: *  the ratio COMPLEX performance over COMPLEX*16 performance is too
        !            36: *  small. A reasonable strategy should take the number of right-hand
        !            37: *  sides and the size of the matrix into account. This might be done
        !            38: *  with a call to ILAENV in the future. Up to now, we always try
        !            39: *  iterative refinement.
        !            40: *
        !            41: *  The iterative refinement process is stopped if
        !            42: *      ITER > ITERMAX
        !            43: *  or for all the RHS we have:
        !            44: *      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
        !            45: *  where
        !            46: *      o ITER is the number of the current iteration in the iterative
        !            47: *        refinement process
        !            48: *      o RNRM is the infinity-norm of the residual
        !            49: *      o XNRM is the infinity-norm of the solution
        !            50: *      o ANRM is the infinity-operator-norm of the matrix A
        !            51: *      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
        !            52: *  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
        !            53: *  respectively.
        !            54: *
        !            55: *  Arguments
        !            56: *  =========
        !            57: *
        !            58: *  N       (input) INTEGER
        !            59: *          The number of linear equations, i.e., the order of the
        !            60: *          matrix A.  N >= 0.
        !            61: *
        !            62: *  NRHS    (input) INTEGER
        !            63: *          The number of right hand sides, i.e., the number of columns
        !            64: *          of the matrix B.  NRHS >= 0.
        !            65: *
        !            66: *  A       (input or input/ouptut) COMPLEX*16 array,
        !            67: *          dimension (LDA,N)
        !            68: *          On entry, the N-by-N coefficient matrix A.
        !            69: *          On exit, if iterative refinement has been successfully used
        !            70: *          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
        !            71: *          unchanged, if double precision factorization has been used
        !            72: *          (INFO.EQ.0 and ITER.LT.0, see description below), then the
        !            73: *          array A contains the factors L and U from the factorization
        !            74: *          A = P*L*U; the unit diagonal elements of L are not stored.
        !            75: *
        !            76: *  LDA     (input) INTEGER
        !            77: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            78: *
        !            79: *  IPIV    (output) INTEGER array, dimension (N)
        !            80: *          The pivot indices that define the permutation matrix P;
        !            81: *          row i of the matrix was interchanged with row IPIV(i).
        !            82: *          Corresponds either to the single precision factorization
        !            83: *          (if INFO.EQ.0 and ITER.GE.0) or the double precision
        !            84: *          factorization (if INFO.EQ.0 and ITER.LT.0).
        !            85: *
        !            86: *  B       (input) COMPLEX*16 array, dimension (LDB,NRHS)
        !            87: *          The N-by-NRHS right hand side matrix B.
        !            88: *
        !            89: *  LDB     (input) INTEGER
        !            90: *          The leading dimension of the array B.  LDB >= max(1,N).
        !            91: *
        !            92: *  X       (output) COMPLEX*16 array, dimension (LDX,NRHS)
        !            93: *          If INFO = 0, the N-by-NRHS solution matrix X.
        !            94: *
        !            95: *  LDX     (input) INTEGER
        !            96: *          The leading dimension of the array X.  LDX >= max(1,N).
        !            97: *
        !            98: *  WORK    (workspace) COMPLEX*16 array, dimension (N*NRHS)
        !            99: *          This array is used to hold the residual vectors.
        !           100: *
        !           101: *  SWORK   (workspace) COMPLEX array, dimension (N*(N+NRHS))
        !           102: *          This array is used to use the single precision matrix and the
        !           103: *          right-hand sides or solutions in single precision.
        !           104: *
        !           105: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
        !           106: *
        !           107: *  ITER    (output) INTEGER
        !           108: *          < 0: iterative refinement has failed, COMPLEX*16
        !           109: *               factorization has been performed
        !           110: *               -1 : the routine fell back to full precision for
        !           111: *                    implementation- or machine-specific reasons
        !           112: *               -2 : narrowing the precision induced an overflow,
        !           113: *                    the routine fell back to full precision
        !           114: *               -3 : failure of CGETRF
        !           115: *               -31: stop the iterative refinement after the 30th
        !           116: *                    iterations
        !           117: *          > 0: iterative refinement has been sucessfully used.
        !           118: *               Returns the number of iterations
        !           119: *
        !           120: *  INFO    (output) INTEGER
        !           121: *          = 0:  successful exit
        !           122: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           123: *          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
        !           124: *                zero.  The factorization has been completed, but the
        !           125: *                factor U is exactly singular, so the solution
        !           126: *                could not be computed.
        !           127: *
        !           128: *  =========
        !           129: *
        !           130: *     .. Parameters ..
        !           131:       LOGICAL            DOITREF
        !           132:       PARAMETER          ( DOITREF = .TRUE. )
        !           133: *
        !           134:       INTEGER            ITERMAX
        !           135:       PARAMETER          ( ITERMAX = 30 )
        !           136: *
        !           137:       DOUBLE PRECISION   BWDMAX
        !           138:       PARAMETER          ( BWDMAX = 1.0E+00 )
        !           139: *
        !           140:       COMPLEX*16         NEGONE, ONE
        !           141:       PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
        !           142:      +                   ONE = ( 1.0D+00, 0.0D+00 ) )
        !           143: *
        !           144: *     .. Local Scalars ..
        !           145:       INTEGER            I, IITER, PTSA, PTSX
        !           146:       DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
        !           147:       COMPLEX*16         ZDUM
        !           148: *
        !           149: *     .. External Subroutines ..
        !           150:       EXTERNAL           CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
        !           151:      +                   ZLACPY, ZLAG2C
        !           152: *     ..
        !           153: *     .. External Functions ..
        !           154:       INTEGER            IZAMAX
        !           155:       DOUBLE PRECISION   DLAMCH, ZLANGE
        !           156:       EXTERNAL           IZAMAX, DLAMCH, ZLANGE
        !           157: *     ..
        !           158: *     .. Intrinsic Functions ..
        !           159:       INTRINSIC          ABS, DBLE, MAX, SQRT
        !           160: *     ..
        !           161: *     .. Statement Functions ..
        !           162:       DOUBLE PRECISION   CABS1
        !           163: *     ..
        !           164: *     .. Statement Function definitions ..
        !           165:       CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
        !           166: *     ..
        !           167: *     .. Executable Statements ..
        !           168: *
        !           169:       INFO = 0
        !           170:       ITER = 0
        !           171: *
        !           172: *     Test the input parameters.
        !           173: *
        !           174:       IF( N.LT.0 ) THEN
        !           175:          INFO = -1
        !           176:       ELSE IF( NRHS.LT.0 ) THEN
        !           177:          INFO = -2
        !           178:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           179:          INFO = -4
        !           180:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           181:          INFO = -7
        !           182:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
        !           183:          INFO = -9
        !           184:       END IF
        !           185:       IF( INFO.NE.0 ) THEN
        !           186:          CALL XERBLA( 'ZCGESV', -INFO )
        !           187:          RETURN
        !           188:       END IF
        !           189: *
        !           190: *     Quick return if (N.EQ.0).
        !           191: *
        !           192:       IF( N.EQ.0 )
        !           193:      +   RETURN
        !           194: *
        !           195: *     Skip single precision iterative refinement if a priori slower
        !           196: *     than double precision factorization.
        !           197: *
        !           198:       IF( .NOT.DOITREF ) THEN
        !           199:          ITER = -1
        !           200:          GO TO 40
        !           201:       END IF
        !           202: *
        !           203: *     Compute some constants.
        !           204: *
        !           205:       ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
        !           206:       EPS = DLAMCH( 'Epsilon' )
        !           207:       CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
        !           208: *
        !           209: *     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
        !           210: *
        !           211:       PTSA = 1
        !           212:       PTSX = PTSA + N*N
        !           213: *
        !           214: *     Convert B from double precision to single precision and store the
        !           215: *     result in SX.
        !           216: *
        !           217:       CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
        !           218: *
        !           219:       IF( INFO.NE.0 ) THEN
        !           220:          ITER = -2
        !           221:          GO TO 40
        !           222:       END IF
        !           223: *
        !           224: *     Convert A from double precision to single precision and store the
        !           225: *     result in SA.
        !           226: *
        !           227:       CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
        !           228: *
        !           229:       IF( INFO.NE.0 ) THEN
        !           230:          ITER = -2
        !           231:          GO TO 40
        !           232:       END IF
        !           233: *
        !           234: *     Compute the LU factorization of SA.
        !           235: *
        !           236:       CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
        !           237: *
        !           238:       IF( INFO.NE.0 ) THEN
        !           239:          ITER = -3
        !           240:          GO TO 40
        !           241:       END IF
        !           242: *
        !           243: *     Solve the system SA*SX = SB.
        !           244: *
        !           245:       CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
        !           246:      +             SWORK( PTSX ), N, INFO )
        !           247: *
        !           248: *     Convert SX back to double precision
        !           249: *
        !           250:       CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
        !           251: *
        !           252: *     Compute R = B - AX (R is WORK).
        !           253: *
        !           254:       CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           255: *
        !           256:       CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
        !           257:      +            LDA, X, LDX, ONE, WORK, N )
        !           258: *
        !           259: *     Check whether the NRHS normwise backward errors satisfy the
        !           260: *     stopping criterion. If yes, set ITER=0 and return.
        !           261: *
        !           262:       DO I = 1, NRHS
        !           263:          XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
        !           264:          RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           265:          IF( RNRM.GT.XNRM*CTE )
        !           266:      +      GO TO 10
        !           267:       END DO
        !           268: *
        !           269: *     If we are here, the NRHS normwise backward errors satisfy the
        !           270: *     stopping criterion. We are good to exit.
        !           271: *
        !           272:       ITER = 0
        !           273:       RETURN
        !           274: *
        !           275:    10 CONTINUE
        !           276: *
        !           277:       DO 30 IITER = 1, ITERMAX
        !           278: *
        !           279: *        Convert R (in WORK) from double precision to single precision
        !           280: *        and store the result in SX.
        !           281: *
        !           282:          CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
        !           283: *
        !           284:          IF( INFO.NE.0 ) THEN
        !           285:             ITER = -2
        !           286:             GO TO 40
        !           287:          END IF
        !           288: *
        !           289: *        Solve the system SA*SX = SR.
        !           290: *
        !           291:          CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
        !           292:      +                SWORK( PTSX ), N, INFO )
        !           293: *
        !           294: *        Convert SX back to double precision and update the current
        !           295: *        iterate.
        !           296: *
        !           297:          CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
        !           298: *
        !           299:          DO I = 1, NRHS
        !           300:             CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
        !           301:          END DO
        !           302: *
        !           303: *        Compute R = B - AX (R is WORK).
        !           304: *
        !           305:          CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
        !           306: *
        !           307:          CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
        !           308:      +               A, LDA, X, LDX, ONE, WORK, N )
        !           309: *
        !           310: *        Check whether the NRHS normwise backward errors satisfy the
        !           311: *        stopping criterion. If yes, set ITER=IITER>0 and return.
        !           312: *
        !           313:          DO I = 1, NRHS
        !           314:             XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
        !           315:             RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
        !           316:             IF( RNRM.GT.XNRM*CTE )
        !           317:      +         GO TO 20
        !           318:          END DO
        !           319: *
        !           320: *        If we are here, the NRHS normwise backward errors satisfy the
        !           321: *        stopping criterion, we are good to exit.
        !           322: *
        !           323:          ITER = IITER
        !           324: *
        !           325:          RETURN
        !           326: *
        !           327:    20    CONTINUE
        !           328: *
        !           329:    30 CONTINUE
        !           330: *
        !           331: *     If we are at this place of the code, this is because we have
        !           332: *     performed ITER=ITERMAX iterations and never satisified the stopping
        !           333: *     criterion, set up the ITER flag accordingly and follow up on double
        !           334: *     precision routine.
        !           335: *
        !           336:       ITER = -ITERMAX - 1
        !           337: *
        !           338:    40 CONTINUE
        !           339: *
        !           340: *     Single-precision iterative refinement failed to converge to a
        !           341: *     satisfactory solution, so we resort to double precision.
        !           342: *
        !           343:       CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
        !           344: *
        !           345:       IF( INFO.NE.0 )
        !           346:      +   RETURN
        !           347: *
        !           348:       CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
        !           349:       CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
        !           350:      +             INFO )
        !           351: *
        !           352:       RETURN
        !           353: *
        !           354: *     End of ZCGESV.
        !           355: *
        !           356:       END

CVSweb interface <joel.bertrand@systella.fr>