File:  [local] / rpl / lapack / lapack / zbdsqr.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZBDSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZBDSQR + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
   22: *                          LDU, C, LDC, RWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZBDSQR computes the singular values and, optionally, the right and/or
   40: *> left singular vectors from the singular value decomposition (SVD) of
   41: *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   42: *> zero-shift QR algorithm.  The SVD of B has the form
   43: *>
   44: *>    B = Q * S * P**H
   45: *>
   46: *> where S is the diagonal matrix of singular values, Q is an orthogonal
   47: *> matrix of left singular vectors, and P is an orthogonal matrix of
   48: *> right singular vectors.  If left singular vectors are requested, this
   49: *> subroutine actually returns U*Q instead of Q, and, if right singular
   50: *> vectors are requested, this subroutine returns P**H*VT instead of
   51: *> P**H, for given complex input matrices U and VT.  When U and VT are
   52: *> the unitary matrices that reduce a general matrix A to bidiagonal
   53: *> form: A = U*B*VT, as computed by ZGEBRD, then
   54: *>
   55: *>    A = (U*Q) * S * (P**H*VT)
   56: *>
   57: *> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
   58: *> for a given complex input matrix C.
   59: *>
   60: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
   61: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   62: *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   63: *> no. 5, pp. 873-912, Sept 1990) and
   64: *> "Accurate singular values and differential qd algorithms," by
   65: *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   66: *> Department, University of California at Berkeley, July 1992
   67: *> for a detailed description of the algorithm.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  B is upper bidiagonal;
   77: *>          = 'L':  B is lower bidiagonal.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix B.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NCVT
   87: *> \verbatim
   88: *>          NCVT is INTEGER
   89: *>          The number of columns of the matrix VT. NCVT >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRU
   93: *> \verbatim
   94: *>          NRU is INTEGER
   95: *>          The number of rows of the matrix U. NRU >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] NCC
   99: *> \verbatim
  100: *>          NCC is INTEGER
  101: *>          The number of columns of the matrix C. NCC >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array, dimension (N)
  107: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
  108: *>          On exit, if INFO=0, the singular values of B in decreasing
  109: *>          order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] E
  113: *> \verbatim
  114: *>          E is DOUBLE PRECISION array, dimension (N-1)
  115: *>          On entry, the N-1 offdiagonal elements of the bidiagonal
  116: *>          matrix B.
  117: *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
  118: *>          will contain the diagonal and superdiagonal elements of a
  119: *>          bidiagonal matrix orthogonally equivalent to the one given
  120: *>          as input.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] VT
  124: *> \verbatim
  125: *>          VT is COMPLEX*16 array, dimension (LDVT, NCVT)
  126: *>          On entry, an N-by-NCVT matrix VT.
  127: *>          On exit, VT is overwritten by P**H * VT.
  128: *>          Not referenced if NCVT = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVT
  132: *> \verbatim
  133: *>          LDVT is INTEGER
  134: *>          The leading dimension of the array VT.
  135: *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] U
  139: *> \verbatim
  140: *>          U is COMPLEX*16 array, dimension (LDU, N)
  141: *>          On entry, an NRU-by-N matrix U.
  142: *>          On exit, U is overwritten by U * Q.
  143: *>          Not referenced if NRU = 0.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDU
  147: *> \verbatim
  148: *>          LDU is INTEGER
  149: *>          The leading dimension of the array U.  LDU >= max(1,NRU).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] C
  153: *> \verbatim
  154: *>          C is COMPLEX*16 array, dimension (LDC, NCC)
  155: *>          On entry, an N-by-NCC matrix C.
  156: *>          On exit, C is overwritten by Q**H * C.
  157: *>          Not referenced if NCC = 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDC
  161: *> \verbatim
  162: *>          LDC is INTEGER
  163: *>          The leading dimension of the array C.
  164: *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] RWORK
  168: *> \verbatim
  169: *>          RWORK is DOUBLE PRECISION array, dimension (4*N)
  170: *> \endverbatim
  171: *>
  172: *> \param[out] INFO
  173: *> \verbatim
  174: *>          INFO is INTEGER
  175: *>          = 0:  successful exit
  176: *>          < 0:  If INFO = -i, the i-th argument had an illegal value
  177: *>          > 0:  the algorithm did not converge; D and E contain the
  178: *>                elements of a bidiagonal matrix which is orthogonally
  179: *>                similar to the input matrix B;  if INFO = i, i
  180: *>                elements of E have not converged to zero.
  181: *> \endverbatim
  182: *
  183: *> \par Internal Parameters:
  184: *  =========================
  185: *>
  186: *> \verbatim
  187: *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  188: *>          TOLMUL controls the convergence criterion of the QR loop.
  189: *>          If it is positive, TOLMUL*EPS is the desired relative
  190: *>             precision in the computed singular values.
  191: *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  192: *>             desired absolute accuracy in the computed singular
  193: *>             values (corresponds to relative accuracy
  194: *>             abs(TOLMUL*EPS) in the largest singular value.
  195: *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  196: *>             between 10 (for fast convergence) and .1/EPS
  197: *>             (for there to be some accuracy in the results).
  198: *>          Default is to lose at either one eighth or 2 of the
  199: *>             available decimal digits in each computed singular value
  200: *>             (whichever is smaller).
  201: *>
  202: *>  MAXITR  INTEGER, default = 6
  203: *>          MAXITR controls the maximum number of passes of the
  204: *>          algorithm through its inner loop. The algorithms stops
  205: *>          (and so fails to converge) if the number of passes
  206: *>          through the inner loop exceeds MAXITR*N**2.
  207: *> \endverbatim
  208: *
  209: *  Authors:
  210: *  ========
  211: *
  212: *> \author Univ. of Tennessee
  213: *> \author Univ. of California Berkeley
  214: *> \author Univ. of Colorado Denver
  215: *> \author NAG Ltd.
  216: *
  217: *> \ingroup complex16OTHERcomputational
  218: *
  219: *  =====================================================================
  220:       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
  221:      $                   LDU, C, LDC, RWORK, INFO )
  222: *
  223: *  -- LAPACK computational routine --
  224: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  225: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  226: *
  227: *     .. Scalar Arguments ..
  228:       CHARACTER          UPLO
  229:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
  230: *     ..
  231: *     .. Array Arguments ..
  232:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  233:       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
  234: *     ..
  235: *
  236: *  =====================================================================
  237: *
  238: *     .. Parameters ..
  239:       DOUBLE PRECISION   ZERO
  240:       PARAMETER          ( ZERO = 0.0D0 )
  241:       DOUBLE PRECISION   ONE
  242:       PARAMETER          ( ONE = 1.0D0 )
  243:       DOUBLE PRECISION   NEGONE
  244:       PARAMETER          ( NEGONE = -1.0D0 )
  245:       DOUBLE PRECISION   HNDRTH
  246:       PARAMETER          ( HNDRTH = 0.01D0 )
  247:       DOUBLE PRECISION   TEN
  248:       PARAMETER          ( TEN = 10.0D0 )
  249:       DOUBLE PRECISION   HNDRD
  250:       PARAMETER          ( HNDRD = 100.0D0 )
  251:       DOUBLE PRECISION   MEIGTH
  252:       PARAMETER          ( MEIGTH = -0.125D0 )
  253:       INTEGER            MAXITR
  254:       PARAMETER          ( MAXITR = 6 )
  255: *     ..
  256: *     .. Local Scalars ..
  257:       LOGICAL            LOWER, ROTATE
  258:       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
  259:      $                   NM12, NM13, OLDLL, OLDM
  260:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  261:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  262:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  263:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  264: *     ..
  265: *     .. External Functions ..
  266:       LOGICAL            LSAME
  267:       DOUBLE PRECISION   DLAMCH
  268:       EXTERNAL           LSAME, DLAMCH
  269: *     ..
  270: *     .. External Subroutines ..
  271:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
  272:      $                   ZDSCAL, ZLASR, ZSWAP
  273: *     ..
  274: *     .. Intrinsic Functions ..
  275:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  276: *     ..
  277: *     .. Executable Statements ..
  278: *
  279: *     Test the input parameters.
  280: *
  281:       INFO = 0
  282:       LOWER = LSAME( UPLO, 'L' )
  283:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  284:          INFO = -1
  285:       ELSE IF( N.LT.0 ) THEN
  286:          INFO = -2
  287:       ELSE IF( NCVT.LT.0 ) THEN
  288:          INFO = -3
  289:       ELSE IF( NRU.LT.0 ) THEN
  290:          INFO = -4
  291:       ELSE IF( NCC.LT.0 ) THEN
  292:          INFO = -5
  293:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  294:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  295:          INFO = -9
  296:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  297:          INFO = -11
  298:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  299:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  300:          INFO = -13
  301:       END IF
  302:       IF( INFO.NE.0 ) THEN
  303:          CALL XERBLA( 'ZBDSQR', -INFO )
  304:          RETURN
  305:       END IF
  306:       IF( N.EQ.0 )
  307:      $   RETURN
  308:       IF( N.EQ.1 )
  309:      $   GO TO 160
  310: *
  311: *     ROTATE is true if any singular vectors desired, false otherwise
  312: *
  313:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  314: *
  315: *     If no singular vectors desired, use qd algorithm
  316: *
  317:       IF( .NOT.ROTATE ) THEN
  318:          CALL DLASQ1( N, D, E, RWORK, INFO )
  319: *
  320: *     If INFO equals 2, dqds didn't finish, try to finish
  321: *
  322:          IF( INFO .NE. 2 ) RETURN
  323:          INFO = 0
  324:       END IF
  325: *
  326:       NM1 = N - 1
  327:       NM12 = NM1 + NM1
  328:       NM13 = NM12 + NM1
  329:       IDIR = 0
  330: *
  331: *     Get machine constants
  332: *
  333:       EPS = DLAMCH( 'Epsilon' )
  334:       UNFL = DLAMCH( 'Safe minimum' )
  335: *
  336: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  337: *     by applying Givens rotations on the left
  338: *
  339:       IF( LOWER ) THEN
  340:          DO 10 I = 1, N - 1
  341:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  342:             D( I ) = R
  343:             E( I ) = SN*D( I+1 )
  344:             D( I+1 ) = CS*D( I+1 )
  345:             RWORK( I ) = CS
  346:             RWORK( NM1+I ) = SN
  347:    10    CONTINUE
  348: *
  349: *        Update singular vectors if desired
  350: *
  351:          IF( NRU.GT.0 )
  352:      $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
  353:      $                  U, LDU )
  354:          IF( NCC.GT.0 )
  355:      $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
  356:      $                  C, LDC )
  357:       END IF
  358: *
  359: *     Compute singular values to relative accuracy TOL
  360: *     (By setting TOL to be negative, algorithm will compute
  361: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  362: *
  363:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  364:       TOL = TOLMUL*EPS
  365: *
  366: *     Compute approximate maximum, minimum singular values
  367: *
  368:       SMAX = ZERO
  369:       DO 20 I = 1, N
  370:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  371:    20 CONTINUE
  372:       DO 30 I = 1, N - 1
  373:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  374:    30 CONTINUE
  375:       SMINL = ZERO
  376:       IF( TOL.GE.ZERO ) THEN
  377: *
  378: *        Relative accuracy desired
  379: *
  380:          SMINOA = ABS( D( 1 ) )
  381:          IF( SMINOA.EQ.ZERO )
  382:      $      GO TO 50
  383:          MU = SMINOA
  384:          DO 40 I = 2, N
  385:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  386:             SMINOA = MIN( SMINOA, MU )
  387:             IF( SMINOA.EQ.ZERO )
  388:      $         GO TO 50
  389:    40    CONTINUE
  390:    50    CONTINUE
  391:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  392:          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
  393:       ELSE
  394: *
  395: *        Absolute accuracy desired
  396: *
  397:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
  398:       END IF
  399: *
  400: *     Prepare for main iteration loop for the singular values
  401: *     (MAXIT is the maximum number of passes through the inner
  402: *     loop permitted before nonconvergence signalled.)
  403: *
  404:       MAXIT = MAXITR*N*N
  405:       ITER = 0
  406:       OLDLL = -1
  407:       OLDM = -1
  408: *
  409: *     M points to last element of unconverged part of matrix
  410: *
  411:       M = N
  412: *
  413: *     Begin main iteration loop
  414: *
  415:    60 CONTINUE
  416: *
  417: *     Check for convergence or exceeding iteration count
  418: *
  419:       IF( M.LE.1 )
  420:      $   GO TO 160
  421:       IF( ITER.GT.MAXIT )
  422:      $   GO TO 200
  423: *
  424: *     Find diagonal block of matrix to work on
  425: *
  426:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  427:      $   D( M ) = ZERO
  428:       SMAX = ABS( D( M ) )
  429:       SMIN = SMAX
  430:       DO 70 LLL = 1, M - 1
  431:          LL = M - LLL
  432:          ABSS = ABS( D( LL ) )
  433:          ABSE = ABS( E( LL ) )
  434:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  435:      $      D( LL ) = ZERO
  436:          IF( ABSE.LE.THRESH )
  437:      $      GO TO 80
  438:          SMIN = MIN( SMIN, ABSS )
  439:          SMAX = MAX( SMAX, ABSS, ABSE )
  440:    70 CONTINUE
  441:       LL = 0
  442:       GO TO 90
  443:    80 CONTINUE
  444:       E( LL ) = ZERO
  445: *
  446: *     Matrix splits since E(LL) = 0
  447: *
  448:       IF( LL.EQ.M-1 ) THEN
  449: *
  450: *        Convergence of bottom singular value, return to top of loop
  451: *
  452:          M = M - 1
  453:          GO TO 60
  454:       END IF
  455:    90 CONTINUE
  456:       LL = LL + 1
  457: *
  458: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  459: *
  460:       IF( LL.EQ.M-1 ) THEN
  461: *
  462: *        2 by 2 block, handle separately
  463: *
  464:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  465:      $                COSR, SINL, COSL )
  466:          D( M-1 ) = SIGMX
  467:          E( M-1 ) = ZERO
  468:          D( M ) = SIGMN
  469: *
  470: *        Compute singular vectors, if desired
  471: *
  472:          IF( NCVT.GT.0 )
  473:      $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
  474:      $                  COSR, SINR )
  475:          IF( NRU.GT.0 )
  476:      $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  477:          IF( NCC.GT.0 )
  478:      $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  479:      $                  SINL )
  480:          M = M - 2
  481:          GO TO 60
  482:       END IF
  483: *
  484: *     If working on new submatrix, choose shift direction
  485: *     (from larger end diagonal element towards smaller)
  486: *
  487:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  488:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  489: *
  490: *           Chase bulge from top (big end) to bottom (small end)
  491: *
  492:             IDIR = 1
  493:          ELSE
  494: *
  495: *           Chase bulge from bottom (big end) to top (small end)
  496: *
  497:             IDIR = 2
  498:          END IF
  499:       END IF
  500: *
  501: *     Apply convergence tests
  502: *
  503:       IF( IDIR.EQ.1 ) THEN
  504: *
  505: *        Run convergence test in forward direction
  506: *        First apply standard test to bottom of matrix
  507: *
  508:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  509:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  510:             E( M-1 ) = ZERO
  511:             GO TO 60
  512:          END IF
  513: *
  514:          IF( TOL.GE.ZERO ) THEN
  515: *
  516: *           If relative accuracy desired,
  517: *           apply convergence criterion forward
  518: *
  519:             MU = ABS( D( LL ) )
  520:             SMINL = MU
  521:             DO 100 LLL = LL, M - 1
  522:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  523:                   E( LLL ) = ZERO
  524:                   GO TO 60
  525:                END IF
  526:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  527:                SMINL = MIN( SMINL, MU )
  528:   100       CONTINUE
  529:          END IF
  530: *
  531:       ELSE
  532: *
  533: *        Run convergence test in backward direction
  534: *        First apply standard test to top of matrix
  535: *
  536:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  537:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  538:             E( LL ) = ZERO
  539:             GO TO 60
  540:          END IF
  541: *
  542:          IF( TOL.GE.ZERO ) THEN
  543: *
  544: *           If relative accuracy desired,
  545: *           apply convergence criterion backward
  546: *
  547:             MU = ABS( D( M ) )
  548:             SMINL = MU
  549:             DO 110 LLL = M - 1, LL, -1
  550:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  551:                   E( LLL ) = ZERO
  552:                   GO TO 60
  553:                END IF
  554:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  555:                SMINL = MIN( SMINL, MU )
  556:   110       CONTINUE
  557:          END IF
  558:       END IF
  559:       OLDLL = LL
  560:       OLDM = M
  561: *
  562: *     Compute shift.  First, test if shifting would ruin relative
  563: *     accuracy, and if so set the shift to zero.
  564: *
  565:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  566:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  567: *
  568: *        Use a zero shift to avoid loss of relative accuracy
  569: *
  570:          SHIFT = ZERO
  571:       ELSE
  572: *
  573: *        Compute the shift from 2-by-2 block at end of matrix
  574: *
  575:          IF( IDIR.EQ.1 ) THEN
  576:             SLL = ABS( D( LL ) )
  577:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  578:          ELSE
  579:             SLL = ABS( D( M ) )
  580:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  581:          END IF
  582: *
  583: *        Test if shift negligible, and if so set to zero
  584: *
  585:          IF( SLL.GT.ZERO ) THEN
  586:             IF( ( SHIFT / SLL )**2.LT.EPS )
  587:      $         SHIFT = ZERO
  588:          END IF
  589:       END IF
  590: *
  591: *     Increment iteration count
  592: *
  593:       ITER = ITER + M - LL
  594: *
  595: *     If SHIFT = 0, do simplified QR iteration
  596: *
  597:       IF( SHIFT.EQ.ZERO ) THEN
  598:          IF( IDIR.EQ.1 ) THEN
  599: *
  600: *           Chase bulge from top to bottom
  601: *           Save cosines and sines for later singular vector updates
  602: *
  603:             CS = ONE
  604:             OLDCS = ONE
  605:             DO 120 I = LL, M - 1
  606:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  607:                IF( I.GT.LL )
  608:      $            E( I-1 ) = OLDSN*R
  609:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  610:                RWORK( I-LL+1 ) = CS
  611:                RWORK( I-LL+1+NM1 ) = SN
  612:                RWORK( I-LL+1+NM12 ) = OLDCS
  613:                RWORK( I-LL+1+NM13 ) = OLDSN
  614:   120       CONTINUE
  615:             H = D( M )*CS
  616:             D( M ) = H*OLDCS
  617:             E( M-1 ) = H*OLDSN
  618: *
  619: *           Update singular vectors
  620: *
  621:             IF( NCVT.GT.0 )
  622:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  623:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  624:             IF( NRU.GT.0 )
  625:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  626:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  627:             IF( NCC.GT.0 )
  628:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  629:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  630: *
  631: *           Test convergence
  632: *
  633:             IF( ABS( E( M-1 ) ).LE.THRESH )
  634:      $         E( M-1 ) = ZERO
  635: *
  636:          ELSE
  637: *
  638: *           Chase bulge from bottom to top
  639: *           Save cosines and sines for later singular vector updates
  640: *
  641:             CS = ONE
  642:             OLDCS = ONE
  643:             DO 130 I = M, LL + 1, -1
  644:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  645:                IF( I.LT.M )
  646:      $            E( I ) = OLDSN*R
  647:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  648:                RWORK( I-LL ) = CS
  649:                RWORK( I-LL+NM1 ) = -SN
  650:                RWORK( I-LL+NM12 ) = OLDCS
  651:                RWORK( I-LL+NM13 ) = -OLDSN
  652:   130       CONTINUE
  653:             H = D( LL )*CS
  654:             D( LL ) = H*OLDCS
  655:             E( LL ) = H*OLDSN
  656: *
  657: *           Update singular vectors
  658: *
  659:             IF( NCVT.GT.0 )
  660:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  661:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  662:             IF( NRU.GT.0 )
  663:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  664:      $                     RWORK( N ), U( 1, LL ), LDU )
  665:             IF( NCC.GT.0 )
  666:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  667:      $                     RWORK( N ), C( LL, 1 ), LDC )
  668: *
  669: *           Test convergence
  670: *
  671:             IF( ABS( E( LL ) ).LE.THRESH )
  672:      $         E( LL ) = ZERO
  673:          END IF
  674:       ELSE
  675: *
  676: *        Use nonzero shift
  677: *
  678:          IF( IDIR.EQ.1 ) THEN
  679: *
  680: *           Chase bulge from top to bottom
  681: *           Save cosines and sines for later singular vector updates
  682: *
  683:             F = ( ABS( D( LL ) )-SHIFT )*
  684:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  685:             G = E( LL )
  686:             DO 140 I = LL, M - 1
  687:                CALL DLARTG( F, G, COSR, SINR, R )
  688:                IF( I.GT.LL )
  689:      $            E( I-1 ) = R
  690:                F = COSR*D( I ) + SINR*E( I )
  691:                E( I ) = COSR*E( I ) - SINR*D( I )
  692:                G = SINR*D( I+1 )
  693:                D( I+1 ) = COSR*D( I+1 )
  694:                CALL DLARTG( F, G, COSL, SINL, R )
  695:                D( I ) = R
  696:                F = COSL*E( I ) + SINL*D( I+1 )
  697:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  698:                IF( I.LT.M-1 ) THEN
  699:                   G = SINL*E( I+1 )
  700:                   E( I+1 ) = COSL*E( I+1 )
  701:                END IF
  702:                RWORK( I-LL+1 ) = COSR
  703:                RWORK( I-LL+1+NM1 ) = SINR
  704:                RWORK( I-LL+1+NM12 ) = COSL
  705:                RWORK( I-LL+1+NM13 ) = SINL
  706:   140       CONTINUE
  707:             E( M-1 ) = F
  708: *
  709: *           Update singular vectors
  710: *
  711:             IF( NCVT.GT.0 )
  712:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  713:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  714:             IF( NRU.GT.0 )
  715:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  716:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  717:             IF( NCC.GT.0 )
  718:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  719:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  720: *
  721: *           Test convergence
  722: *
  723:             IF( ABS( E( M-1 ) ).LE.THRESH )
  724:      $         E( M-1 ) = ZERO
  725: *
  726:          ELSE
  727: *
  728: *           Chase bulge from bottom to top
  729: *           Save cosines and sines for later singular vector updates
  730: *
  731:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  732:      $          D( M ) )
  733:             G = E( M-1 )
  734:             DO 150 I = M, LL + 1, -1
  735:                CALL DLARTG( F, G, COSR, SINR, R )
  736:                IF( I.LT.M )
  737:      $            E( I ) = R
  738:                F = COSR*D( I ) + SINR*E( I-1 )
  739:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  740:                G = SINR*D( I-1 )
  741:                D( I-1 ) = COSR*D( I-1 )
  742:                CALL DLARTG( F, G, COSL, SINL, R )
  743:                D( I ) = R
  744:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  745:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  746:                IF( I.GT.LL+1 ) THEN
  747:                   G = SINL*E( I-2 )
  748:                   E( I-2 ) = COSL*E( I-2 )
  749:                END IF
  750:                RWORK( I-LL ) = COSR
  751:                RWORK( I-LL+NM1 ) = -SINR
  752:                RWORK( I-LL+NM12 ) = COSL
  753:                RWORK( I-LL+NM13 ) = -SINL
  754:   150       CONTINUE
  755:             E( LL ) = F
  756: *
  757: *           Test convergence
  758: *
  759:             IF( ABS( E( LL ) ).LE.THRESH )
  760:      $         E( LL ) = ZERO
  761: *
  762: *           Update singular vectors if desired
  763: *
  764:             IF( NCVT.GT.0 )
  765:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  766:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  767:             IF( NRU.GT.0 )
  768:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  769:      $                     RWORK( N ), U( 1, LL ), LDU )
  770:             IF( NCC.GT.0 )
  771:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  772:      $                     RWORK( N ), C( LL, 1 ), LDC )
  773:          END IF
  774:       END IF
  775: *
  776: *     QR iteration finished, go back and check convergence
  777: *
  778:       GO TO 60
  779: *
  780: *     All singular values converged, so make them positive
  781: *
  782:   160 CONTINUE
  783:       DO 170 I = 1, N
  784:          IF( D( I ).LT.ZERO ) THEN
  785:             D( I ) = -D( I )
  786: *
  787: *           Change sign of singular vectors, if desired
  788: *
  789:             IF( NCVT.GT.0 )
  790:      $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  791:          END IF
  792:   170 CONTINUE
  793: *
  794: *     Sort the singular values into decreasing order (insertion sort on
  795: *     singular values, but only one transposition per singular vector)
  796: *
  797:       DO 190 I = 1, N - 1
  798: *
  799: *        Scan for smallest D(I)
  800: *
  801:          ISUB = 1
  802:          SMIN = D( 1 )
  803:          DO 180 J = 2, N + 1 - I
  804:             IF( D( J ).LE.SMIN ) THEN
  805:                ISUB = J
  806:                SMIN = D( J )
  807:             END IF
  808:   180    CONTINUE
  809:          IF( ISUB.NE.N+1-I ) THEN
  810: *
  811: *           Swap singular values and vectors
  812: *
  813:             D( ISUB ) = D( N+1-I )
  814:             D( N+1-I ) = SMIN
  815:             IF( NCVT.GT.0 )
  816:      $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  817:      $                     LDVT )
  818:             IF( NRU.GT.0 )
  819:      $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  820:             IF( NCC.GT.0 )
  821:      $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  822:          END IF
  823:   190 CONTINUE
  824:       GO TO 220
  825: *
  826: *     Maximum number of iterations exceeded, failure to converge
  827: *
  828:   200 CONTINUE
  829:       INFO = 0
  830:       DO 210 I = 1, N - 1
  831:          IF( E( I ).NE.ZERO )
  832:      $      INFO = INFO + 1
  833:   210 CONTINUE
  834:   220 CONTINUE
  835:       RETURN
  836: *
  837: *     End of ZBDSQR
  838: *
  839:       END

CVSweb interface <joel.bertrand@systella.fr>