File:  [local] / rpl / lapack / lapack / zbdsqr.f
Revision 1.10: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:28 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZBDSQR
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZBDSQR + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbdsqr.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbdsqr.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbdsqr.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
   22: *                          LDU, C, LDC, RWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          UPLO
   26: *       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   30: *       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> ZBDSQR computes the singular values and, optionally, the right and/or
   40: *> left singular vectors from the singular value decomposition (SVD) of
   41: *> a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   42: *> zero-shift QR algorithm.  The SVD of B has the form
   43: *> 
   44: *>    B = Q * S * P**H
   45: *> 
   46: *> where S is the diagonal matrix of singular values, Q is an orthogonal
   47: *> matrix of left singular vectors, and P is an orthogonal matrix of
   48: *> right singular vectors.  If left singular vectors are requested, this
   49: *> subroutine actually returns U*Q instead of Q, and, if right singular
   50: *> vectors are requested, this subroutine returns P**H*VT instead of
   51: *> P**H, for given complex input matrices U and VT.  When U and VT are
   52: *> the unitary matrices that reduce a general matrix A to bidiagonal
   53: *> form: A = U*B*VT, as computed by ZGEBRD, then
   54: *> 
   55: *>    A = (U*Q) * S * (P**H*VT)
   56: *> 
   57: *> is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
   58: *> for a given complex input matrix C.
   59: *>
   60: *> See "Computing  Small Singular Values of Bidiagonal Matrices With
   61: *> Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   62: *> LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   63: *> no. 5, pp. 873-912, Sept 1990) and
   64: *> "Accurate singular values and differential qd algorithms," by
   65: *> B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   66: *> Department, University of California at Berkeley, July 1992
   67: *> for a detailed description of the algorithm.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] UPLO
   74: *> \verbatim
   75: *>          UPLO is CHARACTER*1
   76: *>          = 'U':  B is upper bidiagonal;
   77: *>          = 'L':  B is lower bidiagonal.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] N
   81: *> \verbatim
   82: *>          N is INTEGER
   83: *>          The order of the matrix B.  N >= 0.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] NCVT
   87: *> \verbatim
   88: *>          NCVT is INTEGER
   89: *>          The number of columns of the matrix VT. NCVT >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] NRU
   93: *> \verbatim
   94: *>          NRU is INTEGER
   95: *>          The number of rows of the matrix U. NRU >= 0.
   96: *> \endverbatim
   97: *>
   98: *> \param[in] NCC
   99: *> \verbatim
  100: *>          NCC is INTEGER
  101: *>          The number of columns of the matrix C. NCC >= 0.
  102: *> \endverbatim
  103: *>
  104: *> \param[in,out] D
  105: *> \verbatim
  106: *>          D is DOUBLE PRECISION array, dimension (N)
  107: *>          On entry, the n diagonal elements of the bidiagonal matrix B.
  108: *>          On exit, if INFO=0, the singular values of B in decreasing
  109: *>          order.
  110: *> \endverbatim
  111: *>
  112: *> \param[in,out] E
  113: *> \verbatim
  114: *>          E is DOUBLE PRECISION array, dimension (N-1)
  115: *>          On entry, the N-1 offdiagonal elements of the bidiagonal
  116: *>          matrix B.
  117: *>          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
  118: *>          will contain the diagonal and superdiagonal elements of a
  119: *>          bidiagonal matrix orthogonally equivalent to the one given
  120: *>          as input.
  121: *> \endverbatim
  122: *>
  123: *> \param[in,out] VT
  124: *> \verbatim
  125: *>          VT is COMPLEX*16 array, dimension (LDVT, NCVT)
  126: *>          On entry, an N-by-NCVT matrix VT.
  127: *>          On exit, VT is overwritten by P**H * VT.
  128: *>          Not referenced if NCVT = 0.
  129: *> \endverbatim
  130: *>
  131: *> \param[in] LDVT
  132: *> \verbatim
  133: *>          LDVT is INTEGER
  134: *>          The leading dimension of the array VT.
  135: *>          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
  136: *> \endverbatim
  137: *>
  138: *> \param[in,out] U
  139: *> \verbatim
  140: *>          U is COMPLEX*16 array, dimension (LDU, N)
  141: *>          On entry, an NRU-by-N matrix U.
  142: *>          On exit, U is overwritten by U * Q.
  143: *>          Not referenced if NRU = 0.
  144: *> \endverbatim
  145: *>
  146: *> \param[in] LDU
  147: *> \verbatim
  148: *>          LDU is INTEGER
  149: *>          The leading dimension of the array U.  LDU >= max(1,NRU).
  150: *> \endverbatim
  151: *>
  152: *> \param[in,out] C
  153: *> \verbatim
  154: *>          C is COMPLEX*16 array, dimension (LDC, NCC)
  155: *>          On entry, an N-by-NCC matrix C.
  156: *>          On exit, C is overwritten by Q**H * C.
  157: *>          Not referenced if NCC = 0.
  158: *> \endverbatim
  159: *>
  160: *> \param[in] LDC
  161: *> \verbatim
  162: *>          LDC is INTEGER
  163: *>          The leading dimension of the array C.
  164: *>          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  165: *> \endverbatim
  166: *>
  167: *> \param[out] RWORK
  168: *> \verbatim
  169: *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
  170: *>          if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise
  171: *> \endverbatim
  172: *>
  173: *> \param[out] INFO
  174: *> \verbatim
  175: *>          INFO is INTEGER
  176: *>          = 0:  successful exit
  177: *>          < 0:  If INFO = -i, the i-th argument had an illegal value
  178: *>          > 0:  the algorithm did not converge; D and E contain the
  179: *>                elements of a bidiagonal matrix which is orthogonally
  180: *>                similar to the input matrix B;  if INFO = i, i
  181: *>                elements of E have not converged to zero.
  182: *> \endverbatim
  183: *
  184: *> \par Internal Parameters:
  185: *  =========================
  186: *>
  187: *> \verbatim
  188: *>  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  189: *>          TOLMUL controls the convergence criterion of the QR loop.
  190: *>          If it is positive, TOLMUL*EPS is the desired relative
  191: *>             precision in the computed singular values.
  192: *>          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  193: *>             desired absolute accuracy in the computed singular
  194: *>             values (corresponds to relative accuracy
  195: *>             abs(TOLMUL*EPS) in the largest singular value.
  196: *>          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  197: *>             between 10 (for fast convergence) and .1/EPS
  198: *>             (for there to be some accuracy in the results).
  199: *>          Default is to lose at either one eighth or 2 of the
  200: *>             available decimal digits in each computed singular value
  201: *>             (whichever is smaller).
  202: *>
  203: *>  MAXITR  INTEGER, default = 6
  204: *>          MAXITR controls the maximum number of passes of the
  205: *>          algorithm through its inner loop. The algorithms stops
  206: *>          (and so fails to converge) if the number of passes
  207: *>          through the inner loop exceeds MAXITR*N**2.
  208: *> \endverbatim
  209: *
  210: *  Authors:
  211: *  ========
  212: *
  213: *> \author Univ. of Tennessee 
  214: *> \author Univ. of California Berkeley 
  215: *> \author Univ. of Colorado Denver 
  216: *> \author NAG Ltd. 
  217: *
  218: *> \date November 2011
  219: *
  220: *> \ingroup complex16OTHERcomputational
  221: *
  222: *  =====================================================================
  223:       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
  224:      $                   LDU, C, LDC, RWORK, INFO )
  225: *
  226: *  -- LAPACK computational routine (version 3.4.0) --
  227: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  228: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  229: *     November 2011
  230: *
  231: *     .. Scalar Arguments ..
  232:       CHARACTER          UPLO
  233:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
  234: *     ..
  235: *     .. Array Arguments ..
  236:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
  237:       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
  238: *     ..
  239: *
  240: *  =====================================================================
  241: *
  242: *     .. Parameters ..
  243:       DOUBLE PRECISION   ZERO
  244:       PARAMETER          ( ZERO = 0.0D0 )
  245:       DOUBLE PRECISION   ONE
  246:       PARAMETER          ( ONE = 1.0D0 )
  247:       DOUBLE PRECISION   NEGONE
  248:       PARAMETER          ( NEGONE = -1.0D0 )
  249:       DOUBLE PRECISION   HNDRTH
  250:       PARAMETER          ( HNDRTH = 0.01D0 )
  251:       DOUBLE PRECISION   TEN
  252:       PARAMETER          ( TEN = 10.0D0 )
  253:       DOUBLE PRECISION   HNDRD
  254:       PARAMETER          ( HNDRD = 100.0D0 )
  255:       DOUBLE PRECISION   MEIGTH
  256:       PARAMETER          ( MEIGTH = -0.125D0 )
  257:       INTEGER            MAXITR
  258:       PARAMETER          ( MAXITR = 6 )
  259: *     ..
  260: *     .. Local Scalars ..
  261:       LOGICAL            LOWER, ROTATE
  262:       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
  263:      $                   NM12, NM13, OLDLL, OLDM
  264:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  265:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  266:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  267:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  268: *     ..
  269: *     .. External Functions ..
  270:       LOGICAL            LSAME
  271:       DOUBLE PRECISION   DLAMCH
  272:       EXTERNAL           LSAME, DLAMCH
  273: *     ..
  274: *     .. External Subroutines ..
  275:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
  276:      $                   ZDSCAL, ZLASR, ZSWAP
  277: *     ..
  278: *     .. Intrinsic Functions ..
  279:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  280: *     ..
  281: *     .. Executable Statements ..
  282: *
  283: *     Test the input parameters.
  284: *
  285:       INFO = 0
  286:       LOWER = LSAME( UPLO, 'L' )
  287:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  288:          INFO = -1
  289:       ELSE IF( N.LT.0 ) THEN
  290:          INFO = -2
  291:       ELSE IF( NCVT.LT.0 ) THEN
  292:          INFO = -3
  293:       ELSE IF( NRU.LT.0 ) THEN
  294:          INFO = -4
  295:       ELSE IF( NCC.LT.0 ) THEN
  296:          INFO = -5
  297:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  298:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  299:          INFO = -9
  300:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  301:          INFO = -11
  302:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  303:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  304:          INFO = -13
  305:       END IF
  306:       IF( INFO.NE.0 ) THEN
  307:          CALL XERBLA( 'ZBDSQR', -INFO )
  308:          RETURN
  309:       END IF
  310:       IF( N.EQ.0 )
  311:      $   RETURN
  312:       IF( N.EQ.1 )
  313:      $   GO TO 160
  314: *
  315: *     ROTATE is true if any singular vectors desired, false otherwise
  316: *
  317:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  318: *
  319: *     If no singular vectors desired, use qd algorithm
  320: *
  321:       IF( .NOT.ROTATE ) THEN
  322:          CALL DLASQ1( N, D, E, RWORK, INFO )
  323: *
  324: *     If INFO equals 2, dqds didn't finish, try to finish
  325: *         
  326:          IF( INFO .NE. 2 ) RETURN
  327:          INFO = 0
  328:       END IF
  329: *
  330:       NM1 = N - 1
  331:       NM12 = NM1 + NM1
  332:       NM13 = NM12 + NM1
  333:       IDIR = 0
  334: *
  335: *     Get machine constants
  336: *
  337:       EPS = DLAMCH( 'Epsilon' )
  338:       UNFL = DLAMCH( 'Safe minimum' )
  339: *
  340: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  341: *     by applying Givens rotations on the left
  342: *
  343:       IF( LOWER ) THEN
  344:          DO 10 I = 1, N - 1
  345:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  346:             D( I ) = R
  347:             E( I ) = SN*D( I+1 )
  348:             D( I+1 ) = CS*D( I+1 )
  349:             RWORK( I ) = CS
  350:             RWORK( NM1+I ) = SN
  351:    10    CONTINUE
  352: *
  353: *        Update singular vectors if desired
  354: *
  355:          IF( NRU.GT.0 )
  356:      $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
  357:      $                  U, LDU )
  358:          IF( NCC.GT.0 )
  359:      $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
  360:      $                  C, LDC )
  361:       END IF
  362: *
  363: *     Compute singular values to relative accuracy TOL
  364: *     (By setting TOL to be negative, algorithm will compute
  365: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  366: *
  367:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  368:       TOL = TOLMUL*EPS
  369: *
  370: *     Compute approximate maximum, minimum singular values
  371: *
  372:       SMAX = ZERO
  373:       DO 20 I = 1, N
  374:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  375:    20 CONTINUE
  376:       DO 30 I = 1, N - 1
  377:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  378:    30 CONTINUE
  379:       SMINL = ZERO
  380:       IF( TOL.GE.ZERO ) THEN
  381: *
  382: *        Relative accuracy desired
  383: *
  384:          SMINOA = ABS( D( 1 ) )
  385:          IF( SMINOA.EQ.ZERO )
  386:      $      GO TO 50
  387:          MU = SMINOA
  388:          DO 40 I = 2, N
  389:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  390:             SMINOA = MIN( SMINOA, MU )
  391:             IF( SMINOA.EQ.ZERO )
  392:      $         GO TO 50
  393:    40    CONTINUE
  394:    50    CONTINUE
  395:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  396:          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
  397:       ELSE
  398: *
  399: *        Absolute accuracy desired
  400: *
  401:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
  402:       END IF
  403: *
  404: *     Prepare for main iteration loop for the singular values
  405: *     (MAXIT is the maximum number of passes through the inner
  406: *     loop permitted before nonconvergence signalled.)
  407: *
  408:       MAXIT = MAXITR*N*N
  409:       ITER = 0
  410:       OLDLL = -1
  411:       OLDM = -1
  412: *
  413: *     M points to last element of unconverged part of matrix
  414: *
  415:       M = N
  416: *
  417: *     Begin main iteration loop
  418: *
  419:    60 CONTINUE
  420: *
  421: *     Check for convergence or exceeding iteration count
  422: *
  423:       IF( M.LE.1 )
  424:      $   GO TO 160
  425:       IF( ITER.GT.MAXIT )
  426:      $   GO TO 200
  427: *
  428: *     Find diagonal block of matrix to work on
  429: *
  430:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  431:      $   D( M ) = ZERO
  432:       SMAX = ABS( D( M ) )
  433:       SMIN = SMAX
  434:       DO 70 LLL = 1, M - 1
  435:          LL = M - LLL
  436:          ABSS = ABS( D( LL ) )
  437:          ABSE = ABS( E( LL ) )
  438:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  439:      $      D( LL ) = ZERO
  440:          IF( ABSE.LE.THRESH )
  441:      $      GO TO 80
  442:          SMIN = MIN( SMIN, ABSS )
  443:          SMAX = MAX( SMAX, ABSS, ABSE )
  444:    70 CONTINUE
  445:       LL = 0
  446:       GO TO 90
  447:    80 CONTINUE
  448:       E( LL ) = ZERO
  449: *
  450: *     Matrix splits since E(LL) = 0
  451: *
  452:       IF( LL.EQ.M-1 ) THEN
  453: *
  454: *        Convergence of bottom singular value, return to top of loop
  455: *
  456:          M = M - 1
  457:          GO TO 60
  458:       END IF
  459:    90 CONTINUE
  460:       LL = LL + 1
  461: *
  462: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  463: *
  464:       IF( LL.EQ.M-1 ) THEN
  465: *
  466: *        2 by 2 block, handle separately
  467: *
  468:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  469:      $                COSR, SINL, COSL )
  470:          D( M-1 ) = SIGMX
  471:          E( M-1 ) = ZERO
  472:          D( M ) = SIGMN
  473: *
  474: *        Compute singular vectors, if desired
  475: *
  476:          IF( NCVT.GT.0 )
  477:      $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
  478:      $                  COSR, SINR )
  479:          IF( NRU.GT.0 )
  480:      $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  481:          IF( NCC.GT.0 )
  482:      $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  483:      $                  SINL )
  484:          M = M - 2
  485:          GO TO 60
  486:       END IF
  487: *
  488: *     If working on new submatrix, choose shift direction
  489: *     (from larger end diagonal element towards smaller)
  490: *
  491:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  492:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  493: *
  494: *           Chase bulge from top (big end) to bottom (small end)
  495: *
  496:             IDIR = 1
  497:          ELSE
  498: *
  499: *           Chase bulge from bottom (big end) to top (small end)
  500: *
  501:             IDIR = 2
  502:          END IF
  503:       END IF
  504: *
  505: *     Apply convergence tests
  506: *
  507:       IF( IDIR.EQ.1 ) THEN
  508: *
  509: *        Run convergence test in forward direction
  510: *        First apply standard test to bottom of matrix
  511: *
  512:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  513:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  514:             E( M-1 ) = ZERO
  515:             GO TO 60
  516:          END IF
  517: *
  518:          IF( TOL.GE.ZERO ) THEN
  519: *
  520: *           If relative accuracy desired,
  521: *           apply convergence criterion forward
  522: *
  523:             MU = ABS( D( LL ) )
  524:             SMINL = MU
  525:             DO 100 LLL = LL, M - 1
  526:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  527:                   E( LLL ) = ZERO
  528:                   GO TO 60
  529:                END IF
  530:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  531:                SMINL = MIN( SMINL, MU )
  532:   100       CONTINUE
  533:          END IF
  534: *
  535:       ELSE
  536: *
  537: *        Run convergence test in backward direction
  538: *        First apply standard test to top of matrix
  539: *
  540:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  541:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  542:             E( LL ) = ZERO
  543:             GO TO 60
  544:          END IF
  545: *
  546:          IF( TOL.GE.ZERO ) THEN
  547: *
  548: *           If relative accuracy desired,
  549: *           apply convergence criterion backward
  550: *
  551:             MU = ABS( D( M ) )
  552:             SMINL = MU
  553:             DO 110 LLL = M - 1, LL, -1
  554:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  555:                   E( LLL ) = ZERO
  556:                   GO TO 60
  557:                END IF
  558:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  559:                SMINL = MIN( SMINL, MU )
  560:   110       CONTINUE
  561:          END IF
  562:       END IF
  563:       OLDLL = LL
  564:       OLDM = M
  565: *
  566: *     Compute shift.  First, test if shifting would ruin relative
  567: *     accuracy, and if so set the shift to zero.
  568: *
  569:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  570:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  571: *
  572: *        Use a zero shift to avoid loss of relative accuracy
  573: *
  574:          SHIFT = ZERO
  575:       ELSE
  576: *
  577: *        Compute the shift from 2-by-2 block at end of matrix
  578: *
  579:          IF( IDIR.EQ.1 ) THEN
  580:             SLL = ABS( D( LL ) )
  581:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  582:          ELSE
  583:             SLL = ABS( D( M ) )
  584:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  585:          END IF
  586: *
  587: *        Test if shift negligible, and if so set to zero
  588: *
  589:          IF( SLL.GT.ZERO ) THEN
  590:             IF( ( SHIFT / SLL )**2.LT.EPS )
  591:      $         SHIFT = ZERO
  592:          END IF
  593:       END IF
  594: *
  595: *     Increment iteration count
  596: *
  597:       ITER = ITER + M - LL
  598: *
  599: *     If SHIFT = 0, do simplified QR iteration
  600: *
  601:       IF( SHIFT.EQ.ZERO ) THEN
  602:          IF( IDIR.EQ.1 ) THEN
  603: *
  604: *           Chase bulge from top to bottom
  605: *           Save cosines and sines for later singular vector updates
  606: *
  607:             CS = ONE
  608:             OLDCS = ONE
  609:             DO 120 I = LL, M - 1
  610:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  611:                IF( I.GT.LL )
  612:      $            E( I-1 ) = OLDSN*R
  613:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  614:                RWORK( I-LL+1 ) = CS
  615:                RWORK( I-LL+1+NM1 ) = SN
  616:                RWORK( I-LL+1+NM12 ) = OLDCS
  617:                RWORK( I-LL+1+NM13 ) = OLDSN
  618:   120       CONTINUE
  619:             H = D( M )*CS
  620:             D( M ) = H*OLDCS
  621:             E( M-1 ) = H*OLDSN
  622: *
  623: *           Update singular vectors
  624: *
  625:             IF( NCVT.GT.0 )
  626:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  627:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  628:             IF( NRU.GT.0 )
  629:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  630:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  631:             IF( NCC.GT.0 )
  632:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  633:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  634: *
  635: *           Test convergence
  636: *
  637:             IF( ABS( E( M-1 ) ).LE.THRESH )
  638:      $         E( M-1 ) = ZERO
  639: *
  640:          ELSE
  641: *
  642: *           Chase bulge from bottom to top
  643: *           Save cosines and sines for later singular vector updates
  644: *
  645:             CS = ONE
  646:             OLDCS = ONE
  647:             DO 130 I = M, LL + 1, -1
  648:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  649:                IF( I.LT.M )
  650:      $            E( I ) = OLDSN*R
  651:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  652:                RWORK( I-LL ) = CS
  653:                RWORK( I-LL+NM1 ) = -SN
  654:                RWORK( I-LL+NM12 ) = OLDCS
  655:                RWORK( I-LL+NM13 ) = -OLDSN
  656:   130       CONTINUE
  657:             H = D( LL )*CS
  658:             D( LL ) = H*OLDCS
  659:             E( LL ) = H*OLDSN
  660: *
  661: *           Update singular vectors
  662: *
  663:             IF( NCVT.GT.0 )
  664:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  665:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  666:             IF( NRU.GT.0 )
  667:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  668:      $                     RWORK( N ), U( 1, LL ), LDU )
  669:             IF( NCC.GT.0 )
  670:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  671:      $                     RWORK( N ), C( LL, 1 ), LDC )
  672: *
  673: *           Test convergence
  674: *
  675:             IF( ABS( E( LL ) ).LE.THRESH )
  676:      $         E( LL ) = ZERO
  677:          END IF
  678:       ELSE
  679: *
  680: *        Use nonzero shift
  681: *
  682:          IF( IDIR.EQ.1 ) THEN
  683: *
  684: *           Chase bulge from top to bottom
  685: *           Save cosines and sines for later singular vector updates
  686: *
  687:             F = ( ABS( D( LL ) )-SHIFT )*
  688:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  689:             G = E( LL )
  690:             DO 140 I = LL, M - 1
  691:                CALL DLARTG( F, G, COSR, SINR, R )
  692:                IF( I.GT.LL )
  693:      $            E( I-1 ) = R
  694:                F = COSR*D( I ) + SINR*E( I )
  695:                E( I ) = COSR*E( I ) - SINR*D( I )
  696:                G = SINR*D( I+1 )
  697:                D( I+1 ) = COSR*D( I+1 )
  698:                CALL DLARTG( F, G, COSL, SINL, R )
  699:                D( I ) = R
  700:                F = COSL*E( I ) + SINL*D( I+1 )
  701:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  702:                IF( I.LT.M-1 ) THEN
  703:                   G = SINL*E( I+1 )
  704:                   E( I+1 ) = COSL*E( I+1 )
  705:                END IF
  706:                RWORK( I-LL+1 ) = COSR
  707:                RWORK( I-LL+1+NM1 ) = SINR
  708:                RWORK( I-LL+1+NM12 ) = COSL
  709:                RWORK( I-LL+1+NM13 ) = SINL
  710:   140       CONTINUE
  711:             E( M-1 ) = F
  712: *
  713: *           Update singular vectors
  714: *
  715:             IF( NCVT.GT.0 )
  716:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  717:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  718:             IF( NRU.GT.0 )
  719:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  720:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  721:             IF( NCC.GT.0 )
  722:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  723:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  724: *
  725: *           Test convergence
  726: *
  727:             IF( ABS( E( M-1 ) ).LE.THRESH )
  728:      $         E( M-1 ) = ZERO
  729: *
  730:          ELSE
  731: *
  732: *           Chase bulge from bottom to top
  733: *           Save cosines and sines for later singular vector updates
  734: *
  735:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  736:      $          D( M ) )
  737:             G = E( M-1 )
  738:             DO 150 I = M, LL + 1, -1
  739:                CALL DLARTG( F, G, COSR, SINR, R )
  740:                IF( I.LT.M )
  741:      $            E( I ) = R
  742:                F = COSR*D( I ) + SINR*E( I-1 )
  743:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  744:                G = SINR*D( I-1 )
  745:                D( I-1 ) = COSR*D( I-1 )
  746:                CALL DLARTG( F, G, COSL, SINL, R )
  747:                D( I ) = R
  748:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  749:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  750:                IF( I.GT.LL+1 ) THEN
  751:                   G = SINL*E( I-2 )
  752:                   E( I-2 ) = COSL*E( I-2 )
  753:                END IF
  754:                RWORK( I-LL ) = COSR
  755:                RWORK( I-LL+NM1 ) = -SINR
  756:                RWORK( I-LL+NM12 ) = COSL
  757:                RWORK( I-LL+NM13 ) = -SINL
  758:   150       CONTINUE
  759:             E( LL ) = F
  760: *
  761: *           Test convergence
  762: *
  763:             IF( ABS( E( LL ) ).LE.THRESH )
  764:      $         E( LL ) = ZERO
  765: *
  766: *           Update singular vectors if desired
  767: *
  768:             IF( NCVT.GT.0 )
  769:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  770:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  771:             IF( NRU.GT.0 )
  772:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  773:      $                     RWORK( N ), U( 1, LL ), LDU )
  774:             IF( NCC.GT.0 )
  775:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  776:      $                     RWORK( N ), C( LL, 1 ), LDC )
  777:          END IF
  778:       END IF
  779: *
  780: *     QR iteration finished, go back and check convergence
  781: *
  782:       GO TO 60
  783: *
  784: *     All singular values converged, so make them positive
  785: *
  786:   160 CONTINUE
  787:       DO 170 I = 1, N
  788:          IF( D( I ).LT.ZERO ) THEN
  789:             D( I ) = -D( I )
  790: *
  791: *           Change sign of singular vectors, if desired
  792: *
  793:             IF( NCVT.GT.0 )
  794:      $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  795:          END IF
  796:   170 CONTINUE
  797: *
  798: *     Sort the singular values into decreasing order (insertion sort on
  799: *     singular values, but only one transposition per singular vector)
  800: *
  801:       DO 190 I = 1, N - 1
  802: *
  803: *        Scan for smallest D(I)
  804: *
  805:          ISUB = 1
  806:          SMIN = D( 1 )
  807:          DO 180 J = 2, N + 1 - I
  808:             IF( D( J ).LE.SMIN ) THEN
  809:                ISUB = J
  810:                SMIN = D( J )
  811:             END IF
  812:   180    CONTINUE
  813:          IF( ISUB.NE.N+1-I ) THEN
  814: *
  815: *           Swap singular values and vectors
  816: *
  817:             D( ISUB ) = D( N+1-I )
  818:             D( N+1-I ) = SMIN
  819:             IF( NCVT.GT.0 )
  820:      $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  821:      $                     LDVT )
  822:             IF( NRU.GT.0 )
  823:      $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  824:             IF( NCC.GT.0 )
  825:      $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  826:          END IF
  827:   190 CONTINUE
  828:       GO TO 220
  829: *
  830: *     Maximum number of iterations exceeded, failure to converge
  831: *
  832:   200 CONTINUE
  833:       INFO = 0
  834:       DO 210 I = 1, N - 1
  835:          IF( E( I ).NE.ZERO )
  836:      $      INFO = INFO + 1
  837:   210 CONTINUE
  838:   220 CONTINUE
  839:       RETURN
  840: *
  841: *     End of ZBDSQR
  842: *
  843:       END

CVSweb interface <joel.bertrand@systella.fr>