File:  [local] / rpl / lapack / lapack / zbdsqr.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE ZBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
    2:      $                   LDU, C, LDC, RWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          UPLO
   11:       INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
   12: *     ..
   13: *     .. Array Arguments ..
   14:       DOUBLE PRECISION   D( * ), E( * ), RWORK( * )
   15:       COMPLEX*16         C( LDC, * ), U( LDU, * ), VT( LDVT, * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  ZBDSQR computes the singular values and, optionally, the right and/or
   22: *  left singular vectors from the singular value decomposition (SVD) of
   23: *  a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
   24: *  zero-shift QR algorithm.  The SVD of B has the form
   25:    26: *     B = Q * S * P**H
   27:    28: *  where S is the diagonal matrix of singular values, Q is an orthogonal
   29: *  matrix of left singular vectors, and P is an orthogonal matrix of
   30: *  right singular vectors.  If left singular vectors are requested, this
   31: *  subroutine actually returns U*Q instead of Q, and, if right singular
   32: *  vectors are requested, this subroutine returns P**H*VT instead of
   33: *  P**H, for given complex input matrices U and VT.  When U and VT are
   34: *  the unitary matrices that reduce a general matrix A to bidiagonal
   35: *  form: A = U*B*VT, as computed by ZGEBRD, then
   36:    37: *     A = (U*Q) * S * (P**H*VT)
   38:    39: *  is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
   40: *  for a given complex input matrix C.
   41: *
   42: *  See "Computing  Small Singular Values of Bidiagonal Matrices With
   43: *  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
   44: *  LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
   45: *  no. 5, pp. 873-912, Sept 1990) and
   46: *  "Accurate singular values and differential qd algorithms," by
   47: *  B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
   48: *  Department, University of California at Berkeley, July 1992
   49: *  for a detailed description of the algorithm.
   50: *
   51: *  Arguments
   52: *  =========
   53: *
   54: *  UPLO    (input) CHARACTER*1
   55: *          = 'U':  B is upper bidiagonal;
   56: *          = 'L':  B is lower bidiagonal.
   57: *
   58: *  N       (input) INTEGER
   59: *          The order of the matrix B.  N >= 0.
   60: *
   61: *  NCVT    (input) INTEGER
   62: *          The number of columns of the matrix VT. NCVT >= 0.
   63: *
   64: *  NRU     (input) INTEGER
   65: *          The number of rows of the matrix U. NRU >= 0.
   66: *
   67: *  NCC     (input) INTEGER
   68: *          The number of columns of the matrix C. NCC >= 0.
   69: *
   70: *  D       (input/output) DOUBLE PRECISION array, dimension (N)
   71: *          On entry, the n diagonal elements of the bidiagonal matrix B.
   72: *          On exit, if INFO=0, the singular values of B in decreasing
   73: *          order.
   74: *
   75: *  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
   76: *          On entry, the N-1 offdiagonal elements of the bidiagonal
   77: *          matrix B.
   78: *          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
   79: *          will contain the diagonal and superdiagonal elements of a
   80: *          bidiagonal matrix orthogonally equivalent to the one given
   81: *          as input.
   82: *
   83: *  VT      (input/output) COMPLEX*16 array, dimension (LDVT, NCVT)
   84: *          On entry, an N-by-NCVT matrix VT.
   85: *          On exit, VT is overwritten by P**H * VT.
   86: *          Not referenced if NCVT = 0.
   87: *
   88: *  LDVT    (input) INTEGER
   89: *          The leading dimension of the array VT.
   90: *          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
   91: *
   92: *  U       (input/output) COMPLEX*16 array, dimension (LDU, N)
   93: *          On entry, an NRU-by-N matrix U.
   94: *          On exit, U is overwritten by U * Q.
   95: *          Not referenced if NRU = 0.
   96: *
   97: *  LDU     (input) INTEGER
   98: *          The leading dimension of the array U.  LDU >= max(1,NRU).
   99: *
  100: *  C       (input/output) COMPLEX*16 array, dimension (LDC, NCC)
  101: *          On entry, an N-by-NCC matrix C.
  102: *          On exit, C is overwritten by Q**H * C.
  103: *          Not referenced if NCC = 0.
  104: *
  105: *  LDC     (input) INTEGER
  106: *          The leading dimension of the array C.
  107: *          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
  108: *
  109: *  RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
  110: *          if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise
  111: *
  112: *  INFO    (output) INTEGER
  113: *          = 0:  successful exit
  114: *          < 0:  If INFO = -i, the i-th argument had an illegal value
  115: *          > 0:  the algorithm did not converge; D and E contain the
  116: *                elements of a bidiagonal matrix which is orthogonally
  117: *                similar to the input matrix B;  if INFO = i, i
  118: *                elements of E have not converged to zero.
  119: *
  120: *  Internal Parameters
  121: *  ===================
  122: *
  123: *  TOLMUL  DOUBLE PRECISION, default = max(10,min(100,EPS**(-1/8)))
  124: *          TOLMUL controls the convergence criterion of the QR loop.
  125: *          If it is positive, TOLMUL*EPS is the desired relative
  126: *             precision in the computed singular values.
  127: *          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
  128: *             desired absolute accuracy in the computed singular
  129: *             values (corresponds to relative accuracy
  130: *             abs(TOLMUL*EPS) in the largest singular value.
  131: *          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
  132: *             between 10 (for fast convergence) and .1/EPS
  133: *             (for there to be some accuracy in the results).
  134: *          Default is to lose at either one eighth or 2 of the
  135: *             available decimal digits in each computed singular value
  136: *             (whichever is smaller).
  137: *
  138: *  MAXITR  INTEGER, default = 6
  139: *          MAXITR controls the maximum number of passes of the
  140: *          algorithm through its inner loop. The algorithms stops
  141: *          (and so fails to converge) if the number of passes
  142: *          through the inner loop exceeds MAXITR*N**2.
  143: *
  144: *  =====================================================================
  145: *
  146: *     .. Parameters ..
  147:       DOUBLE PRECISION   ZERO
  148:       PARAMETER          ( ZERO = 0.0D0 )
  149:       DOUBLE PRECISION   ONE
  150:       PARAMETER          ( ONE = 1.0D0 )
  151:       DOUBLE PRECISION   NEGONE
  152:       PARAMETER          ( NEGONE = -1.0D0 )
  153:       DOUBLE PRECISION   HNDRTH
  154:       PARAMETER          ( HNDRTH = 0.01D0 )
  155:       DOUBLE PRECISION   TEN
  156:       PARAMETER          ( TEN = 10.0D0 )
  157:       DOUBLE PRECISION   HNDRD
  158:       PARAMETER          ( HNDRD = 100.0D0 )
  159:       DOUBLE PRECISION   MEIGTH
  160:       PARAMETER          ( MEIGTH = -0.125D0 )
  161:       INTEGER            MAXITR
  162:       PARAMETER          ( MAXITR = 6 )
  163: *     ..
  164: *     .. Local Scalars ..
  165:       LOGICAL            LOWER, ROTATE
  166:       INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
  167:      $                   NM12, NM13, OLDLL, OLDM
  168:       DOUBLE PRECISION   ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
  169:      $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
  170:      $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
  171:      $                   SN, THRESH, TOL, TOLMUL, UNFL
  172: *     ..
  173: *     .. External Functions ..
  174:       LOGICAL            LSAME
  175:       DOUBLE PRECISION   DLAMCH
  176:       EXTERNAL           LSAME, DLAMCH
  177: *     ..
  178: *     .. External Subroutines ..
  179:       EXTERNAL           DLARTG, DLAS2, DLASQ1, DLASV2, XERBLA, ZDROT,
  180:      $                   ZDSCAL, ZLASR, ZSWAP
  181: *     ..
  182: *     .. Intrinsic Functions ..
  183:       INTRINSIC          ABS, DBLE, MAX, MIN, SIGN, SQRT
  184: *     ..
  185: *     .. Executable Statements ..
  186: *
  187: *     Test the input parameters.
  188: *
  189:       INFO = 0
  190:       LOWER = LSAME( UPLO, 'L' )
  191:       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
  192:          INFO = -1
  193:       ELSE IF( N.LT.0 ) THEN
  194:          INFO = -2
  195:       ELSE IF( NCVT.LT.0 ) THEN
  196:          INFO = -3
  197:       ELSE IF( NRU.LT.0 ) THEN
  198:          INFO = -4
  199:       ELSE IF( NCC.LT.0 ) THEN
  200:          INFO = -5
  201:       ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
  202:      $         ( NCVT.GT.0 .AND. LDVT.LT.MAX( 1, N ) ) ) THEN
  203:          INFO = -9
  204:       ELSE IF( LDU.LT.MAX( 1, NRU ) ) THEN
  205:          INFO = -11
  206:       ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
  207:      $         ( NCC.GT.0 .AND. LDC.LT.MAX( 1, N ) ) ) THEN
  208:          INFO = -13
  209:       END IF
  210:       IF( INFO.NE.0 ) THEN
  211:          CALL XERBLA( 'ZBDSQR', -INFO )
  212:          RETURN
  213:       END IF
  214:       IF( N.EQ.0 )
  215:      $   RETURN
  216:       IF( N.EQ.1 )
  217:      $   GO TO 160
  218: *
  219: *     ROTATE is true if any singular vectors desired, false otherwise
  220: *
  221:       ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
  222: *
  223: *     If no singular vectors desired, use qd algorithm
  224: *
  225:       IF( .NOT.ROTATE ) THEN
  226:          CALL DLASQ1( N, D, E, RWORK, INFO )
  227:          RETURN
  228:       END IF
  229: *
  230:       NM1 = N - 1
  231:       NM12 = NM1 + NM1
  232:       NM13 = NM12 + NM1
  233:       IDIR = 0
  234: *
  235: *     Get machine constants
  236: *
  237:       EPS = DLAMCH( 'Epsilon' )
  238:       UNFL = DLAMCH( 'Safe minimum' )
  239: *
  240: *     If matrix lower bidiagonal, rotate to be upper bidiagonal
  241: *     by applying Givens rotations on the left
  242: *
  243:       IF( LOWER ) THEN
  244:          DO 10 I = 1, N - 1
  245:             CALL DLARTG( D( I ), E( I ), CS, SN, R )
  246:             D( I ) = R
  247:             E( I ) = SN*D( I+1 )
  248:             D( I+1 ) = CS*D( I+1 )
  249:             RWORK( I ) = CS
  250:             RWORK( NM1+I ) = SN
  251:    10    CONTINUE
  252: *
  253: *        Update singular vectors if desired
  254: *
  255:          IF( NRU.GT.0 )
  256:      $      CALL ZLASR( 'R', 'V', 'F', NRU, N, RWORK( 1 ), RWORK( N ),
  257:      $                  U, LDU )
  258:          IF( NCC.GT.0 )
  259:      $      CALL ZLASR( 'L', 'V', 'F', N, NCC, RWORK( 1 ), RWORK( N ),
  260:      $                  C, LDC )
  261:       END IF
  262: *
  263: *     Compute singular values to relative accuracy TOL
  264: *     (By setting TOL to be negative, algorithm will compute
  265: *     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
  266: *
  267:       TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
  268:       TOL = TOLMUL*EPS
  269: *
  270: *     Compute approximate maximum, minimum singular values
  271: *
  272:       SMAX = ZERO
  273:       DO 20 I = 1, N
  274:          SMAX = MAX( SMAX, ABS( D( I ) ) )
  275:    20 CONTINUE
  276:       DO 30 I = 1, N - 1
  277:          SMAX = MAX( SMAX, ABS( E( I ) ) )
  278:    30 CONTINUE
  279:       SMINL = ZERO
  280:       IF( TOL.GE.ZERO ) THEN
  281: *
  282: *        Relative accuracy desired
  283: *
  284:          SMINOA = ABS( D( 1 ) )
  285:          IF( SMINOA.EQ.ZERO )
  286:      $      GO TO 50
  287:          MU = SMINOA
  288:          DO 40 I = 2, N
  289:             MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
  290:             SMINOA = MIN( SMINOA, MU )
  291:             IF( SMINOA.EQ.ZERO )
  292:      $         GO TO 50
  293:    40    CONTINUE
  294:    50    CONTINUE
  295:          SMINOA = SMINOA / SQRT( DBLE( N ) )
  296:          THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
  297:       ELSE
  298: *
  299: *        Absolute accuracy desired
  300: *
  301:          THRESH = MAX( ABS( TOL )*SMAX, MAXITR*N*N*UNFL )
  302:       END IF
  303: *
  304: *     Prepare for main iteration loop for the singular values
  305: *     (MAXIT is the maximum number of passes through the inner
  306: *     loop permitted before nonconvergence signalled.)
  307: *
  308:       MAXIT = MAXITR*N*N
  309:       ITER = 0
  310:       OLDLL = -1
  311:       OLDM = -1
  312: *
  313: *     M points to last element of unconverged part of matrix
  314: *
  315:       M = N
  316: *
  317: *     Begin main iteration loop
  318: *
  319:    60 CONTINUE
  320: *
  321: *     Check for convergence or exceeding iteration count
  322: *
  323:       IF( M.LE.1 )
  324:      $   GO TO 160
  325:       IF( ITER.GT.MAXIT )
  326:      $   GO TO 200
  327: *
  328: *     Find diagonal block of matrix to work on
  329: *
  330:       IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
  331:      $   D( M ) = ZERO
  332:       SMAX = ABS( D( M ) )
  333:       SMIN = SMAX
  334:       DO 70 LLL = 1, M - 1
  335:          LL = M - LLL
  336:          ABSS = ABS( D( LL ) )
  337:          ABSE = ABS( E( LL ) )
  338:          IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
  339:      $      D( LL ) = ZERO
  340:          IF( ABSE.LE.THRESH )
  341:      $      GO TO 80
  342:          SMIN = MIN( SMIN, ABSS )
  343:          SMAX = MAX( SMAX, ABSS, ABSE )
  344:    70 CONTINUE
  345:       LL = 0
  346:       GO TO 90
  347:    80 CONTINUE
  348:       E( LL ) = ZERO
  349: *
  350: *     Matrix splits since E(LL) = 0
  351: *
  352:       IF( LL.EQ.M-1 ) THEN
  353: *
  354: *        Convergence of bottom singular value, return to top of loop
  355: *
  356:          M = M - 1
  357:          GO TO 60
  358:       END IF
  359:    90 CONTINUE
  360:       LL = LL + 1
  361: *
  362: *     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
  363: *
  364:       IF( LL.EQ.M-1 ) THEN
  365: *
  366: *        2 by 2 block, handle separately
  367: *
  368:          CALL DLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
  369:      $                COSR, SINL, COSL )
  370:          D( M-1 ) = SIGMX
  371:          E( M-1 ) = ZERO
  372:          D( M ) = SIGMN
  373: *
  374: *        Compute singular vectors, if desired
  375: *
  376:          IF( NCVT.GT.0 )
  377:      $      CALL ZDROT( NCVT, VT( M-1, 1 ), LDVT, VT( M, 1 ), LDVT,
  378:      $                  COSR, SINR )
  379:          IF( NRU.GT.0 )
  380:      $      CALL ZDROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
  381:          IF( NCC.GT.0 )
  382:      $      CALL ZDROT( NCC, C( M-1, 1 ), LDC, C( M, 1 ), LDC, COSL,
  383:      $                  SINL )
  384:          M = M - 2
  385:          GO TO 60
  386:       END IF
  387: *
  388: *     If working on new submatrix, choose shift direction
  389: *     (from larger end diagonal element towards smaller)
  390: *
  391:       IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
  392:          IF( ABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
  393: *
  394: *           Chase bulge from top (big end) to bottom (small end)
  395: *
  396:             IDIR = 1
  397:          ELSE
  398: *
  399: *           Chase bulge from bottom (big end) to top (small end)
  400: *
  401:             IDIR = 2
  402:          END IF
  403:       END IF
  404: *
  405: *     Apply convergence tests
  406: *
  407:       IF( IDIR.EQ.1 ) THEN
  408: *
  409: *        Run convergence test in forward direction
  410: *        First apply standard test to bottom of matrix
  411: *
  412:          IF( ABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
  413:      $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
  414:             E( M-1 ) = ZERO
  415:             GO TO 60
  416:          END IF
  417: *
  418:          IF( TOL.GE.ZERO ) THEN
  419: *
  420: *           If relative accuracy desired,
  421: *           apply convergence criterion forward
  422: *
  423:             MU = ABS( D( LL ) )
  424:             SMINL = MU
  425:             DO 100 LLL = LL, M - 1
  426:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  427:                   E( LLL ) = ZERO
  428:                   GO TO 60
  429:                END IF
  430:                MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  431:                SMINL = MIN( SMINL, MU )
  432:   100       CONTINUE
  433:          END IF
  434: *
  435:       ELSE
  436: *
  437: *        Run convergence test in backward direction
  438: *        First apply standard test to top of matrix
  439: *
  440:          IF( ABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
  441:      $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
  442:             E( LL ) = ZERO
  443:             GO TO 60
  444:          END IF
  445: *
  446:          IF( TOL.GE.ZERO ) THEN
  447: *
  448: *           If relative accuracy desired,
  449: *           apply convergence criterion backward
  450: *
  451:             MU = ABS( D( M ) )
  452:             SMINL = MU
  453:             DO 110 LLL = M - 1, LL, -1
  454:                IF( ABS( E( LLL ) ).LE.TOL*MU ) THEN
  455:                   E( LLL ) = ZERO
  456:                   GO TO 60
  457:                END IF
  458:                MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
  459:                SMINL = MIN( SMINL, MU )
  460:   110       CONTINUE
  461:          END IF
  462:       END IF
  463:       OLDLL = LL
  464:       OLDM = M
  465: *
  466: *     Compute shift.  First, test if shifting would ruin relative
  467: *     accuracy, and if so set the shift to zero.
  468: *
  469:       IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
  470:      $    MAX( EPS, HNDRTH*TOL ) ) THEN
  471: *
  472: *        Use a zero shift to avoid loss of relative accuracy
  473: *
  474:          SHIFT = ZERO
  475:       ELSE
  476: *
  477: *        Compute the shift from 2-by-2 block at end of matrix
  478: *
  479:          IF( IDIR.EQ.1 ) THEN
  480:             SLL = ABS( D( LL ) )
  481:             CALL DLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
  482:          ELSE
  483:             SLL = ABS( D( M ) )
  484:             CALL DLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
  485:          END IF
  486: *
  487: *        Test if shift negligible, and if so set to zero
  488: *
  489:          IF( SLL.GT.ZERO ) THEN
  490:             IF( ( SHIFT / SLL )**2.LT.EPS )
  491:      $         SHIFT = ZERO
  492:          END IF
  493:       END IF
  494: *
  495: *     Increment iteration count
  496: *
  497:       ITER = ITER + M - LL
  498: *
  499: *     If SHIFT = 0, do simplified QR iteration
  500: *
  501:       IF( SHIFT.EQ.ZERO ) THEN
  502:          IF( IDIR.EQ.1 ) THEN
  503: *
  504: *           Chase bulge from top to bottom
  505: *           Save cosines and sines for later singular vector updates
  506: *
  507:             CS = ONE
  508:             OLDCS = ONE
  509:             DO 120 I = LL, M - 1
  510:                CALL DLARTG( D( I )*CS, E( I ), CS, SN, R )
  511:                IF( I.GT.LL )
  512:      $            E( I-1 ) = OLDSN*R
  513:                CALL DLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
  514:                RWORK( I-LL+1 ) = CS
  515:                RWORK( I-LL+1+NM1 ) = SN
  516:                RWORK( I-LL+1+NM12 ) = OLDCS
  517:                RWORK( I-LL+1+NM13 ) = OLDSN
  518:   120       CONTINUE
  519:             H = D( M )*CS
  520:             D( M ) = H*OLDCS
  521:             E( M-1 ) = H*OLDSN
  522: *
  523: *           Update singular vectors
  524: *
  525:             IF( NCVT.GT.0 )
  526:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  527:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  528:             IF( NRU.GT.0 )
  529:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  530:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  531:             IF( NCC.GT.0 )
  532:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  533:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  534: *
  535: *           Test convergence
  536: *
  537:             IF( ABS( E( M-1 ) ).LE.THRESH )
  538:      $         E( M-1 ) = ZERO
  539: *
  540:          ELSE
  541: *
  542: *           Chase bulge from bottom to top
  543: *           Save cosines and sines for later singular vector updates
  544: *
  545:             CS = ONE
  546:             OLDCS = ONE
  547:             DO 130 I = M, LL + 1, -1
  548:                CALL DLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
  549:                IF( I.LT.M )
  550:      $            E( I ) = OLDSN*R
  551:                CALL DLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
  552:                RWORK( I-LL ) = CS
  553:                RWORK( I-LL+NM1 ) = -SN
  554:                RWORK( I-LL+NM12 ) = OLDCS
  555:                RWORK( I-LL+NM13 ) = -OLDSN
  556:   130       CONTINUE
  557:             H = D( LL )*CS
  558:             D( LL ) = H*OLDCS
  559:             E( LL ) = H*OLDSN
  560: *
  561: *           Update singular vectors
  562: *
  563:             IF( NCVT.GT.0 )
  564:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  565:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  566:             IF( NRU.GT.0 )
  567:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  568:      $                     RWORK( N ), U( 1, LL ), LDU )
  569:             IF( NCC.GT.0 )
  570:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  571:      $                     RWORK( N ), C( LL, 1 ), LDC )
  572: *
  573: *           Test convergence
  574: *
  575:             IF( ABS( E( LL ) ).LE.THRESH )
  576:      $         E( LL ) = ZERO
  577:          END IF
  578:       ELSE
  579: *
  580: *        Use nonzero shift
  581: *
  582:          IF( IDIR.EQ.1 ) THEN
  583: *
  584: *           Chase bulge from top to bottom
  585: *           Save cosines and sines for later singular vector updates
  586: *
  587:             F = ( ABS( D( LL ) )-SHIFT )*
  588:      $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
  589:             G = E( LL )
  590:             DO 140 I = LL, M - 1
  591:                CALL DLARTG( F, G, COSR, SINR, R )
  592:                IF( I.GT.LL )
  593:      $            E( I-1 ) = R
  594:                F = COSR*D( I ) + SINR*E( I )
  595:                E( I ) = COSR*E( I ) - SINR*D( I )
  596:                G = SINR*D( I+1 )
  597:                D( I+1 ) = COSR*D( I+1 )
  598:                CALL DLARTG( F, G, COSL, SINL, R )
  599:                D( I ) = R
  600:                F = COSL*E( I ) + SINL*D( I+1 )
  601:                D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
  602:                IF( I.LT.M-1 ) THEN
  603:                   G = SINL*E( I+1 )
  604:                   E( I+1 ) = COSL*E( I+1 )
  605:                END IF
  606:                RWORK( I-LL+1 ) = COSR
  607:                RWORK( I-LL+1+NM1 ) = SINR
  608:                RWORK( I-LL+1+NM12 ) = COSL
  609:                RWORK( I-LL+1+NM13 ) = SINL
  610:   140       CONTINUE
  611:             E( M-1 ) = F
  612: *
  613: *           Update singular vectors
  614: *
  615:             IF( NCVT.GT.0 )
  616:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCVT, RWORK( 1 ),
  617:      $                     RWORK( N ), VT( LL, 1 ), LDVT )
  618:             IF( NRU.GT.0 )
  619:      $         CALL ZLASR( 'R', 'V', 'F', NRU, M-LL+1, RWORK( NM12+1 ),
  620:      $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
  621:             IF( NCC.GT.0 )
  622:      $         CALL ZLASR( 'L', 'V', 'F', M-LL+1, NCC, RWORK( NM12+1 ),
  623:      $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
  624: *
  625: *           Test convergence
  626: *
  627:             IF( ABS( E( M-1 ) ).LE.THRESH )
  628:      $         E( M-1 ) = ZERO
  629: *
  630:          ELSE
  631: *
  632: *           Chase bulge from bottom to top
  633: *           Save cosines and sines for later singular vector updates
  634: *
  635:             F = ( ABS( D( M ) )-SHIFT )*( SIGN( ONE, D( M ) )+SHIFT /
  636:      $          D( M ) )
  637:             G = E( M-1 )
  638:             DO 150 I = M, LL + 1, -1
  639:                CALL DLARTG( F, G, COSR, SINR, R )
  640:                IF( I.LT.M )
  641:      $            E( I ) = R
  642:                F = COSR*D( I ) + SINR*E( I-1 )
  643:                E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
  644:                G = SINR*D( I-1 )
  645:                D( I-1 ) = COSR*D( I-1 )
  646:                CALL DLARTG( F, G, COSL, SINL, R )
  647:                D( I ) = R
  648:                F = COSL*E( I-1 ) + SINL*D( I-1 )
  649:                D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
  650:                IF( I.GT.LL+1 ) THEN
  651:                   G = SINL*E( I-2 )
  652:                   E( I-2 ) = COSL*E( I-2 )
  653:                END IF
  654:                RWORK( I-LL ) = COSR
  655:                RWORK( I-LL+NM1 ) = -SINR
  656:                RWORK( I-LL+NM12 ) = COSL
  657:                RWORK( I-LL+NM13 ) = -SINL
  658:   150       CONTINUE
  659:             E( LL ) = F
  660: *
  661: *           Test convergence
  662: *
  663:             IF( ABS( E( LL ) ).LE.THRESH )
  664:      $         E( LL ) = ZERO
  665: *
  666: *           Update singular vectors if desired
  667: *
  668:             IF( NCVT.GT.0 )
  669:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCVT, RWORK( NM12+1 ),
  670:      $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
  671:             IF( NRU.GT.0 )
  672:      $         CALL ZLASR( 'R', 'V', 'B', NRU, M-LL+1, RWORK( 1 ),
  673:      $                     RWORK( N ), U( 1, LL ), LDU )
  674:             IF( NCC.GT.0 )
  675:      $         CALL ZLASR( 'L', 'V', 'B', M-LL+1, NCC, RWORK( 1 ),
  676:      $                     RWORK( N ), C( LL, 1 ), LDC )
  677:          END IF
  678:       END IF
  679: *
  680: *     QR iteration finished, go back and check convergence
  681: *
  682:       GO TO 60
  683: *
  684: *     All singular values converged, so make them positive
  685: *
  686:   160 CONTINUE
  687:       DO 170 I = 1, N
  688:          IF( D( I ).LT.ZERO ) THEN
  689:             D( I ) = -D( I )
  690: *
  691: *           Change sign of singular vectors, if desired
  692: *
  693:             IF( NCVT.GT.0 )
  694:      $         CALL ZDSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
  695:          END IF
  696:   170 CONTINUE
  697: *
  698: *     Sort the singular values into decreasing order (insertion sort on
  699: *     singular values, but only one transposition per singular vector)
  700: *
  701:       DO 190 I = 1, N - 1
  702: *
  703: *        Scan for smallest D(I)
  704: *
  705:          ISUB = 1
  706:          SMIN = D( 1 )
  707:          DO 180 J = 2, N + 1 - I
  708:             IF( D( J ).LE.SMIN ) THEN
  709:                ISUB = J
  710:                SMIN = D( J )
  711:             END IF
  712:   180    CONTINUE
  713:          IF( ISUB.NE.N+1-I ) THEN
  714: *
  715: *           Swap singular values and vectors
  716: *
  717:             D( ISUB ) = D( N+1-I )
  718:             D( N+1-I ) = SMIN
  719:             IF( NCVT.GT.0 )
  720:      $         CALL ZSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
  721:      $                     LDVT )
  722:             IF( NRU.GT.0 )
  723:      $         CALL ZSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
  724:             IF( NCC.GT.0 )
  725:      $         CALL ZSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
  726:          END IF
  727:   190 CONTINUE
  728:       GO TO 220
  729: *
  730: *     Maximum number of iterations exceeded, failure to converge
  731: *
  732:   200 CONTINUE
  733:       INFO = 0
  734:       DO 210 I = 1, N - 1
  735:          IF( E( I ).NE.ZERO )
  736:      $      INFO = INFO + 1
  737:   210 CONTINUE
  738:   220 CONTINUE
  739:       RETURN
  740: *
  741: *     End of ZBDSQR
  742: *
  743:       END

CVSweb interface <joel.bertrand@systella.fr>