File:  [local] / rpl / lapack / lapack / zbbcsd.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Wed Aug 22 09:48:28 2012 UTC (11 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_9, rpl-4_1_10, HEAD
Cohérence

    1: *> \brief \b ZBBCSD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download ZBBCSD + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbbcsd.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbbcsd.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbbcsd.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
   22: *                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
   23: *                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
   24: *                          B22D, B22E, RWORK, LRWORK, INFO )
   25:    26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
   32: *      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
   33: *      $                   PHI( * ), THETA( * ), RWORK( * )
   34: *       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   35: *      $                   V2T( LDV2T, * )
   36: *       ..
   37: *  
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> ZBBCSD computes the CS decomposition of a unitary matrix in
   45: *> bidiagonal-block form,
   46: *>
   47: *>
   48: *>     [ B11 | B12 0  0 ]
   49: *>     [  0  |  0 -I  0 ]
   50: *> X = [----------------]
   51: *>     [ B21 | B22 0  0 ]
   52: *>     [  0  |  0  0  I ]
   53: *>
   54: *>                               [  C | -S  0  0 ]
   55: *>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
   56: *>                 = [---------] [---------------] [---------]   .
   57: *>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
   58: *>                               [  0 |  0  0  I ]
   59: *>
   60: *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
   61: *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
   62: *> transposed and/or permuted. This can be done in constant time using
   63: *> the TRANS and SIGNS options. See ZUNCSD for details.)
   64: *>
   65: *> The bidiagonal matrices B11, B12, B21, and B22 are represented
   66: *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
   67: *>
   68: *> The unitary matrices U1, U2, V1T, and V2T are input/output.
   69: *> The input matrices are pre- or post-multiplied by the appropriate
   70: *> singular vector matrices.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] JOBU1
   77: *> \verbatim
   78: *>          JOBU1 is CHARACTER
   79: *>          = 'Y':      U1 is updated;
   80: *>          otherwise:  U1 is not updated.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] JOBU2
   84: *> \verbatim
   85: *>          JOBU2 is CHARACTER
   86: *>          = 'Y':      U2 is updated;
   87: *>          otherwise:  U2 is not updated.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBV1T
   91: *> \verbatim
   92: *>          JOBV1T is CHARACTER
   93: *>          = 'Y':      V1T is updated;
   94: *>          otherwise:  V1T is not updated.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBV2T
   98: *> \verbatim
   99: *>          JOBV2T is CHARACTER
  100: *>          = 'Y':      V2T is updated;
  101: *>          otherwise:  V2T is not updated.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TRANS
  105: *> \verbatim
  106: *>          TRANS is CHARACTER
  107: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
  108: *>                      order;
  109: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
  110: *>                      major order.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The number of rows and columns in X, the unitary matrix in
  117: *>          bidiagonal-block form.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] P
  121: *> \verbatim
  122: *>          P is INTEGER
  123: *>          The number of rows in the top-left block of X. 0 <= P <= M.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] Q
  127: *> \verbatim
  128: *>          Q is INTEGER
  129: *>          The number of columns in the top-left block of X.
  130: *>          0 <= Q <= MIN(P,M-P,M-Q).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] THETA
  134: *> \verbatim
  135: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  136: *>          On entry, the angles THETA(1),...,THETA(Q) that, along with
  137: *>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138: *>          form. On exit, the angles whose cosines and sines define the
  139: *>          diagonal blocks in the CS decomposition.
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] PHI
  143: *> \verbatim
  144: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  145: *>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146: *>          THETA(Q), define the matrix in bidiagonal-block form.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] U1
  150: *> \verbatim
  151: *>          U1 is COMPLEX*16 array, dimension (LDU1,P)
  152: *>          On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
  153: *>          by the left singular vector matrix common to [ B11 ; 0 ] and
  154: *>          [ B12 0 0 ; 0 -I 0 0 ].
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU1
  158: *> \verbatim
  159: *>          LDU1 is INTEGER
  160: *>          The leading dimension of the array U1.
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] U2
  164: *> \verbatim
  165: *>          U2 is COMPLEX*16 array, dimension (LDU2,M-P)
  166: *>          On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
  167: *>          postmultiplied by the left singular vector matrix common to
  168: *>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDU2
  172: *> \verbatim
  173: *>          LDU2 is INTEGER
  174: *>          The leading dimension of the array U2.
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] V1T
  178: *> \verbatim
  179: *>          V1T is COMPLEX*16 array, dimension (LDV1T,Q)
  180: *>          On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
  181: *>          by the conjugate transpose of the right singular vector
  182: *>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV1T
  186: *> \verbatim
  187: *>          LDV1T is INTEGER
  188: *>          The leading dimension of the array V1T.
  189: *> \endverbatim
  190: *>
  191: *> \param[in,out] V2T
  192: *> \verbatim
  193: *>          V2T is COMPLEX*16 array, dimenison (LDV2T,M-Q)
  194: *>          On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
  195: *>          premultiplied by the conjugate transpose of the right
  196: *>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197: *>          [ B22 0 0 ; 0 0 I ].
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDV2T
  201: *> \verbatim
  202: *>          LDV2T is INTEGER
  203: *>          The leading dimension of the array V2T.
  204: *> \endverbatim
  205: *>
  206: *> \param[out] B11D
  207: *> \verbatim
  208: *>          B11D is DOUBLE PRECISION array, dimension (Q)
  209: *>          When ZBBCSD converges, B11D contains the cosines of THETA(1),
  210: *>          ..., THETA(Q). If ZBBCSD fails to converge, then B11D
  211: *>          contains the diagonal of the partially reduced top-left
  212: *>          block.
  213: *> \endverbatim
  214: *>
  215: *> \param[out] B11E
  216: *> \verbatim
  217: *>          B11E is DOUBLE PRECISION array, dimension (Q-1)
  218: *>          When ZBBCSD converges, B11E contains zeros. If ZBBCSD fails
  219: *>          to converge, then B11E contains the superdiagonal of the
  220: *>          partially reduced top-left block.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] B12D
  224: *> \verbatim
  225: *>          B12D is DOUBLE PRECISION array, dimension (Q)
  226: *>          When ZBBCSD converges, B12D contains the negative sines of
  227: *>          THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  228: *>          B12D contains the diagonal of the partially reduced top-right
  229: *>          block.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] B12E
  233: *> \verbatim
  234: *>          B12E is DOUBLE PRECISION array, dimension (Q-1)
  235: *>          When ZBBCSD converges, B12E contains zeros. If ZBBCSD fails
  236: *>          to converge, then B12E contains the subdiagonal of the
  237: *>          partially reduced top-right block.
  238: *> \endverbatim
  239: *>
  240: *> \param[out] B21D
  241: *> \verbatim
  242: *>          B21D is DOUBLE PRECISION array, dimension (Q)
  243: *>          When CBBCSD converges, B21D contains the negative sines of
  244: *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
  245: *>          B21D contains the diagonal of the partially reduced bottom-left
  246: *>          block.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] B21E
  250: *> \verbatim
  251: *>          B21E is DOUBLE PRECISION array, dimension (Q-1)
  252: *>          When CBBCSD converges, B21E contains zeros. If CBBCSD fails
  253: *>          to converge, then B21E contains the subdiagonal of the
  254: *>          partially reduced bottom-left block.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] B22D
  258: *> \verbatim
  259: *>          B22D is DOUBLE PRECISION array, dimension (Q)
  260: *>          When CBBCSD converges, B22D contains the negative sines of
  261: *>          THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
  262: *>          B22D contains the diagonal of the partially reduced bottom-right
  263: *>          block.
  264: *> \endverbatim
  265: *>
  266: *> \param[out] B22E
  267: *> \verbatim
  268: *>          B22E is DOUBLE PRECISION array, dimension (Q-1)
  269: *>          When CBBCSD converges, B22E contains zeros. If CBBCSD fails
  270: *>          to converge, then B22E contains the subdiagonal of the
  271: *>          partially reduced bottom-right block.
  272: *> \endverbatim
  273: *>
  274: *> \param[out] RWORK
  275: *> \verbatim
  276: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  277: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  278: *> \endverbatim
  279: *>
  280: *> \param[in] LRWORK
  281: *> \verbatim
  282: *>          LRWORK is INTEGER
  283: *>          The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
  284: *>
  285: *>          If LRWORK = -1, then a workspace query is assumed; the
  286: *>          routine only calculates the optimal size of the RWORK array,
  287: *>          returns this value as the first entry of the work array, and
  288: *>          no error message related to LRWORK is issued by XERBLA.
  289: *> \endverbatim
  290: *>
  291: *> \param[out] INFO
  292: *> \verbatim
  293: *>          INFO is INTEGER
  294: *>          = 0:  successful exit.
  295: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  296: *>          > 0:  if ZBBCSD did not converge, INFO specifies the number
  297: *>                of nonzero entries in PHI, and B11D, B11E, etc.,
  298: *>                contain the partially reduced matrix.
  299: *> \endverbatim
  300: *
  301: *> \par Internal Parameters:
  302: *  =========================
  303: *>
  304: *> \verbatim
  305: *>  TOLMUL  DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306: *>          TOLMUL controls the convergence criterion of the QR loop.
  307: *>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308: *>          are within TOLMUL*EPS of either bound.
  309: *> \endverbatim
  310: *
  311: *> \par References:
  312: *  ================
  313: *>
  314: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315: *>      Algorithms, 50(1):33-65, 2009.
  316: *
  317: *  Authors:
  318: *  ========
  319: *
  320: *> \author Univ. of Tennessee 
  321: *> \author Univ. of California Berkeley 
  322: *> \author Univ. of Colorado Denver 
  323: *> \author NAG Ltd. 
  324: *
  325: *> \date November 2011
  326: *
  327: *> \ingroup complex16OTHERcomputational
  328: *
  329: *  =====================================================================
  330:       SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  331:      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  332:      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  333:      $                   B22D, B22E, RWORK, LRWORK, INFO )
  334: *
  335: *  -- LAPACK computational routine (version 3.4.0) --
  336: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  337: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  338: *     November 2011
  339: *
  340: *     .. Scalar Arguments ..
  341:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  342:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
  343: *     ..
  344: *     .. Array Arguments ..
  345:       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  346:      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  347:      $                   PHI( * ), THETA( * ), RWORK( * )
  348:       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  349:      $                   V2T( LDV2T, * )
  350: *     ..
  351: *
  352: *  ===================================================================
  353: *
  354: *     .. Parameters ..
  355:       INTEGER            MAXITR
  356:       PARAMETER          ( MAXITR = 6 )
  357:       DOUBLE PRECISION   HUNDRED, MEIGHTH, ONE, PIOVER2, TEN, ZERO
  358:       PARAMETER          ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  359:      $                     ONE = 1.0D0, PIOVER2 = 1.57079632679489662D0,
  360:      $                     TEN = 10.0D0, ZERO = 0.0D0 )
  361:       COMPLEX*16         NEGONECOMPLEX
  362:       PARAMETER          ( NEGONECOMPLEX = (-1.0D0,0.0D0) )
  363: *     ..
  364: *     .. Local Scalars ..
  365:       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
  366:      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  367:      $                   WANTV2T
  368:       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  369:      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  370:      $                   LRWORKMIN, LRWORKOPT, MAXIT, MINI
  371:       DOUBLE PRECISION   B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  372:      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
  373:      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  374:      $                   UNFL, X1, X2, Y1, Y2
  375: *
  376:       EXTERNAL           DLARTGP, DLARTGS, DLAS2, XERBLA, ZLASR, ZSCAL,
  377:      $                   ZSWAP
  378: *     ..
  379: *     .. External Functions ..
  380:       DOUBLE PRECISION   DLAMCH
  381:       LOGICAL            LSAME
  382:       EXTERNAL           LSAME, DLAMCH
  383: *     ..
  384: *     .. Intrinsic Functions ..
  385:       INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  386: *     ..
  387: *     .. Executable Statements ..
  388: *
  389: *     Test input arguments
  390: *
  391:       INFO = 0
  392:       LQUERY = LRWORK .EQ. -1
  393:       WANTU1 = LSAME( JOBU1, 'Y' )
  394:       WANTU2 = LSAME( JOBU2, 'Y' )
  395:       WANTV1T = LSAME( JOBV1T, 'Y' )
  396:       WANTV2T = LSAME( JOBV2T, 'Y' )
  397:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  398: *
  399:       IF( M .LT. 0 ) THEN
  400:          INFO = -6
  401:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  402:          INFO = -7
  403:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  404:          INFO = -8
  405:       ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  406:          INFO = -8
  407:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  408:          INFO = -12
  409:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  410:          INFO = -14
  411:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  412:          INFO = -16
  413:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  414:          INFO = -18
  415:       END IF
  416: *
  417: *     Quick return if Q = 0
  418: *
  419:       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  420:          LRWORKMIN = 1
  421:          RWORK(1) = LRWORKMIN
  422:          RETURN
  423:       END IF
  424: *
  425: *     Compute workspace
  426: *
  427:       IF( INFO .EQ. 0 ) THEN
  428:          IU1CS = 1
  429:          IU1SN = IU1CS + Q
  430:          IU2CS = IU1SN + Q
  431:          IU2SN = IU2CS + Q
  432:          IV1TCS = IU2SN + Q
  433:          IV1TSN = IV1TCS + Q
  434:          IV2TCS = IV1TSN + Q
  435:          IV2TSN = IV2TCS + Q
  436:          LRWORKOPT = IV2TSN + Q - 1
  437:          LRWORKMIN = LRWORKOPT
  438:          RWORK(1) = LRWORKOPT
  439:          IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
  440:             INFO = -28
  441:          END IF
  442:       END IF
  443: *
  444:       IF( INFO .NE. 0 ) THEN
  445:          CALL XERBLA( 'ZBBCSD', -INFO )
  446:          RETURN
  447:       ELSE IF( LQUERY ) THEN
  448:          RETURN
  449:       END IF
  450: *
  451: *     Get machine constants
  452: *
  453:       EPS = DLAMCH( 'Epsilon' )
  454:       UNFL = DLAMCH( 'Safe minimum' )
  455:       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  456:       TOL = TOLMUL*EPS
  457:       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  458: *
  459: *     Test for negligible sines or cosines
  460: *
  461:       DO I = 1, Q
  462:          IF( THETA(I) .LT. THRESH ) THEN
  463:             THETA(I) = ZERO
  464:          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  465:             THETA(I) = PIOVER2
  466:          END IF
  467:       END DO
  468:       DO I = 1, Q-1
  469:          IF( PHI(I) .LT. THRESH ) THEN
  470:             PHI(I) = ZERO
  471:          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  472:             PHI(I) = PIOVER2
  473:          END IF
  474:       END DO
  475: *
  476: *     Initial deflation
  477: *
  478:       IMAX = Q
  479:       DO WHILE( ( IMAX .GT. 1 ) .AND. ( PHI(IMAX-1) .EQ. ZERO ) )
  480:          IMAX = IMAX - 1
  481:       END DO
  482:       IMIN = IMAX - 1
  483:       IF  ( IMIN .GT. 1 ) THEN
  484:          DO WHILE( PHI(IMIN-1) .NE. ZERO )
  485:             IMIN = IMIN - 1
  486:             IF  ( IMIN .LE. 1 ) EXIT
  487:          END DO
  488:       END IF
  489: *
  490: *     Initialize iteration counter
  491: *
  492:       MAXIT = MAXITR*Q*Q
  493:       ITER = 0
  494: *
  495: *     Begin main iteration loop
  496: *
  497:       DO WHILE( IMAX .GT. 1 )
  498: *
  499: *        Compute the matrix entries
  500: *
  501:          B11D(IMIN) = COS( THETA(IMIN) )
  502:          B21D(IMIN) = -SIN( THETA(IMIN) )
  503:          DO I = IMIN, IMAX - 1
  504:             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  505:             B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  506:             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  507:             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  508:             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  509:             B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  510:             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  511:             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  512:          END DO
  513:          B12D(IMAX) = SIN( THETA(IMAX) )
  514:          B22D(IMAX) = COS( THETA(IMAX) )
  515: *
  516: *        Abort if not converging; otherwise, increment ITER
  517: *
  518:          IF( ITER .GT. MAXIT ) THEN
  519:             INFO = 0
  520:             DO I = 1, Q
  521:                IF( PHI(I) .NE. ZERO )
  522:      $            INFO = INFO + 1
  523:             END DO
  524:             RETURN
  525:          END IF
  526: *
  527:          ITER = ITER + IMAX - IMIN
  528: *
  529: *        Compute shifts
  530: *
  531:          THETAMAX = THETA(IMIN)
  532:          THETAMIN = THETA(IMIN)
  533:          DO I = IMIN+1, IMAX
  534:             IF( THETA(I) > THETAMAX )
  535:      $         THETAMAX = THETA(I)
  536:             IF( THETA(I) < THETAMIN )
  537:      $         THETAMIN = THETA(I)
  538:          END DO
  539: *
  540:          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  541: *
  542: *           Zero on diagonals of B11 and B22; induce deflation with a
  543: *           zero shift
  544: *
  545:             MU = ZERO
  546:             NU = ONE
  547: *
  548:          ELSE IF( THETAMIN .LT. THRESH ) THEN
  549: *
  550: *           Zero on diagonals of B12 and B22; induce deflation with a
  551: *           zero shift
  552: *
  553:             MU = ONE
  554:             NU = ZERO
  555: *
  556:          ELSE
  557: *
  558: *           Compute shifts for B11 and B21 and use the lesser
  559: *
  560:             CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  561:      $                  DUMMY )
  562:             CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  563:      $                  DUMMY )
  564: *
  565:             IF( SIGMA11 .LE. SIGMA21 ) THEN
  566:                MU = SIGMA11
  567:                NU = SQRT( ONE - MU**2 )
  568:                IF( MU .LT. THRESH ) THEN
  569:                   MU = ZERO
  570:                   NU = ONE
  571:                END IF
  572:             ELSE
  573:                NU = SIGMA21
  574:                MU = SQRT( 1.0 - NU**2 )
  575:                IF( NU .LT. THRESH ) THEN
  576:                   MU = ONE
  577:                   NU = ZERO
  578:                END IF
  579:             END IF
  580:          END IF
  581: *
  582: *        Rotate to produce bulges in B11 and B21
  583: *
  584:          IF( MU .LE. NU ) THEN
  585:             CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  586:      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  587:          ELSE
  588:             CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  589:      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  590:          END IF
  591: *
  592:          TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  593:      $          RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
  594:          B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  595:      $                RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
  596:          B11D(IMIN) = TEMP
  597:          B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  598:          B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  599:          TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  600:      $          RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
  601:          B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  602:      $                RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
  603:          B21D(IMIN) = TEMP
  604:          B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  605:          B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  606: *
  607: *        Compute THETA(IMIN)
  608: *
  609:          THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  610:      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  611: *
  612: *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  613: *
  614:          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  615:             CALL DLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
  616:      $                    RWORK(IU1CS+IMIN-1), R )
  617:          ELSE IF( MU .LE. NU ) THEN
  618:             CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  619:      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  620:          ELSE
  621:             CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  622:      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  623:          END IF
  624:          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  625:             CALL DLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
  626:      $                    RWORK(IU2CS+IMIN-1), R )
  627:          ELSE IF( NU .LT. MU ) THEN
  628:             CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  629:      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  630:          ELSE
  631:             CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  632:      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  633:          END IF
  634:          RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
  635:          RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
  636: *
  637:          TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
  638:      $          RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  639:          B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  640:      $                  RWORK(IU1SN+IMIN-1)*B11E(IMIN)
  641:          B11E(IMIN) = TEMP
  642:          IF( IMAX .GT. IMIN+1 ) THEN
  643:             B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  644:             B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  645:          END IF
  646:          TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
  647:      $          RWORK(IU1SN+IMIN-1)*B12E(IMIN)
  648:          B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
  649:      $                RWORK(IU1SN+IMIN-1)*B12D(IMIN)
  650:          B12D(IMIN) = TEMP
  651:          B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  652:          B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  653:          TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
  654:      $          RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  655:          B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  656:      $                  RWORK(IU2SN+IMIN-1)*B21E(IMIN)
  657:          B21E(IMIN) = TEMP
  658:          IF( IMAX .GT. IMIN+1 ) THEN
  659:             B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  660:             B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  661:          END IF
  662:          TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
  663:      $          RWORK(IU2SN+IMIN-1)*B22E(IMIN)
  664:          B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
  665:      $                RWORK(IU2SN+IMIN-1)*B22D(IMIN)
  666:          B22D(IMIN) = TEMP
  667:          B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  668:          B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  669: *
  670: *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
  671: *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  672: *        bottom-right
  673: *
  674:          DO I = IMIN+1, IMAX-1
  675: *
  676: *           Compute PHI(I-1)
  677: *
  678:             X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  679:             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  680:             Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  681:             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  682: *
  683:             PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  684: *
  685: *           Determine if there are bulges to chase or if a new direct
  686: *           summand has been reached
  687: *
  688:             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  689:             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  690:             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  691:             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  692: *
  693: *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  694: *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  695: *           chasing by applying the original shift again.
  696: *
  697:             IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  698:                CALL DLARTGP( X2, X1, RWORK(IV1TSN+I-1),
  699:      $                       RWORK(IV1TCS+I-1), R )
  700:             ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  701:                CALL DLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
  702:      $                       RWORK(IV1TCS+I-1), R )
  703:             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  704:                CALL DLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
  705:      $                       RWORK(IV1TCS+I-1), R )
  706:             ELSE IF( MU .LE. NU ) THEN
  707:                CALL DLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
  708:      $                       RWORK(IV1TSN+I-1) )
  709:             ELSE
  710:                CALL DLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
  711:      $                       RWORK(IV1TSN+I-1) )
  712:             END IF
  713:             RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
  714:             RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
  715:             IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  716:                CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
  717:      $                       RWORK(IV2TCS+I-1-1), R )
  718:             ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  719:                CALL DLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
  720:      $                       RWORK(IV2TCS+I-1-1), R )
  721:             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  722:                CALL DLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
  723:      $                       RWORK(IV2TCS+I-1-1), R )
  724:             ELSE IF( NU .LT. MU ) THEN
  725:                CALL DLARTGS( B12E(I-1), B12D(I), NU,
  726:      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  727:             ELSE
  728:                CALL DLARTGS( B22E(I-1), B22D(I), MU,
  729:      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  730:             END IF
  731: *
  732:             TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
  733:             B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
  734:      $                RWORK(IV1TSN+I-1)*B11D(I)
  735:             B11D(I) = TEMP
  736:             B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
  737:             B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
  738:             TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
  739:             B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
  740:      $                RWORK(IV1TSN+I-1)*B21D(I)
  741:             B21D(I) = TEMP
  742:             B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
  743:             B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
  744:             TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
  745:      $             RWORK(IV2TSN+I-1-1)*B12D(I)
  746:             B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
  747:      $                RWORK(IV2TSN+I-1-1)*B12E(I-1)
  748:             B12E(I-1) = TEMP
  749:             B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
  750:             B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
  751:             TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
  752:      $             RWORK(IV2TSN+I-1-1)*B22D(I)
  753:             B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
  754:      $                RWORK(IV2TSN+I-1-1)*B22E(I-1)
  755:             B22E(I-1) = TEMP
  756:             B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
  757:             B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
  758: *
  759: *           Compute THETA(I)
  760: *
  761:             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  762:             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  763:             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  764:             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  765: *
  766:             THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  767: *
  768: *           Determine if there are bulges to chase or if a new direct
  769: *           summand has been reached
  770: *
  771:             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  772:             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  773:             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  774:             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  775: *
  776: *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  777: *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  778: *           chasing by applying the original shift again.
  779: *
  780:             IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  781:                CALL DLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
  782:      $                       R )
  783:             ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  784:                CALL DLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
  785:      $                       RWORK(IU1CS+I-1), R )
  786:             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  787:                CALL DLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
  788:      $                       RWORK(IU1CS+I-1), R )
  789:             ELSE IF( MU .LE. NU ) THEN
  790:                CALL DLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
  791:      $                       RWORK(IU1SN+I-1) )
  792:             ELSE
  793:                CALL DLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
  794:      $                       RWORK(IU1SN+I-1) )
  795:             END IF
  796:             IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  797:                CALL DLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
  798:      $                       R )
  799:             ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  800:                CALL DLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
  801:      $                       RWORK(IU2CS+I-1), R )
  802:             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  803:                CALL DLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
  804:      $                       RWORK(IU2CS+I-1), R )
  805:             ELSE IF( NU .LT. MU ) THEN
  806:                CALL DLARTGS( B21E(I), B21E(I+1), NU, RWORK(IU2CS+I-1),
  807:      $                       RWORK(IU2SN+I-1) )
  808:             ELSE
  809:                CALL DLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
  810:      $                       RWORK(IU2SN+I-1) )
  811:             END IF
  812:             RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
  813:             RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
  814: *
  815:             TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
  816:             B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
  817:      $                  RWORK(IU1SN+I-1)*B11E(I)
  818:             B11E(I) = TEMP
  819:             IF( I .LT. IMAX - 1 ) THEN
  820:                B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
  821:                B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
  822:             END IF
  823:             TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
  824:             B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
  825:      $                  RWORK(IU2SN+I-1)*B21E(I)
  826:             B21E(I) = TEMP
  827:             IF( I .LT. IMAX - 1 ) THEN
  828:                B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
  829:                B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
  830:             END IF
  831:             TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
  832:             B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
  833:      $                RWORK(IU1SN+I-1)*B12D(I)
  834:             B12D(I) = TEMP
  835:             B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
  836:             B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
  837:             TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
  838:             B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
  839:      $                RWORK(IU2SN+I-1)*B22D(I)
  840:             B22D(I) = TEMP
  841:             B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
  842:             B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
  843: *
  844:          END DO
  845: *
  846: *        Compute PHI(IMAX-1)
  847: *
  848:          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  849:      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
  850:          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  851:      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
  852:          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  853: *
  854:          PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  855: *
  856: *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  857: *
  858:          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  859:          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  860: *
  861:          IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  862:             CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
  863:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  864:          ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  865:             CALL DLARTGP( B12BULGE, B12D(IMAX-1),
  866:      $                    RWORK(IV2TSN+IMAX-1-1),
  867:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  868:          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  869:             CALL DLARTGP( B22BULGE, B22D(IMAX-1),
  870:      $                    RWORK(IV2TSN+IMAX-1-1),
  871:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  872:          ELSE IF( NU .LT. MU ) THEN
  873:             CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  874:      $                    RWORK(IV2TCS+IMAX-1-1),
  875:      $                    RWORK(IV2TSN+IMAX-1-1) )
  876:          ELSE
  877:             CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  878:      $                    RWORK(IV2TCS+IMAX-1-1),
  879:      $                    RWORK(IV2TSN+IMAX-1-1) )
  880:          END IF
  881: *
  882:          TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  883:      $          RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  884:          B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  885:      $                RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  886:          B12E(IMAX-1) = TEMP
  887:          TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  888:      $          RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  889:          B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  890:      $                RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  891:          B22E(IMAX-1) = TEMP
  892: *
  893: *        Update singular vectors
  894: *
  895:          IF( WANTU1 ) THEN
  896:             IF( COLMAJOR ) THEN
  897:                CALL ZLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  898:      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  899:      $                     U1(1,IMIN), LDU1 )
  900:             ELSE
  901:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  902:      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  903:      $                     U1(IMIN,1), LDU1 )
  904:             END IF
  905:          END IF
  906:          IF( WANTU2 ) THEN
  907:             IF( COLMAJOR ) THEN
  908:                CALL ZLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  909:      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  910:      $                     U2(1,IMIN), LDU2 )
  911:             ELSE
  912:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  913:      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  914:      $                     U2(IMIN,1), LDU2 )
  915:             END IF
  916:          END IF
  917:          IF( WANTV1T ) THEN
  918:             IF( COLMAJOR ) THEN
  919:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  920:      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  921:      $                     V1T(IMIN,1), LDV1T )
  922:             ELSE
  923:                CALL ZLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  924:      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  925:      $                     V1T(1,IMIN), LDV1T )
  926:             END IF
  927:          END IF
  928:          IF( WANTV2T ) THEN
  929:             IF( COLMAJOR ) THEN
  930:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  931:      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  932:      $                     V2T(IMIN,1), LDV2T )
  933:             ELSE
  934:                CALL ZLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  935:      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  936:      $                     V2T(1,IMIN), LDV2T )
  937:             END IF
  938:          END IF
  939: *
  940: *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  941: *
  942:          IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  943:             B11D(IMAX) = -B11D(IMAX)
  944:             B21D(IMAX) = -B21D(IMAX)
  945:             IF( WANTV1T ) THEN
  946:                IF( COLMAJOR ) THEN
  947:                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
  948:                ELSE
  949:                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
  950:                END IF
  951:             END IF
  952:          END IF
  953: *
  954: *        Compute THETA(IMAX)
  955: *
  956:          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  957:      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
  958:          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  959:      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
  960: *
  961:          THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  962: *
  963: *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  964: *        and B22(IMAX,IMAX-1)
  965: *
  966:          IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  967:             B12D(IMAX) = -B12D(IMAX)
  968:             IF( WANTU1 ) THEN
  969:                IF( COLMAJOR ) THEN
  970:                   CALL ZSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
  971:                ELSE
  972:                   CALL ZSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
  973:                END IF
  974:             END IF
  975:          END IF
  976:          IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  977:             B22D(IMAX) = -B22D(IMAX)
  978:             IF( WANTU2 ) THEN
  979:                IF( COLMAJOR ) THEN
  980:                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
  981:                ELSE
  982:                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
  983:                END IF
  984:             END IF
  985:          END IF
  986: *
  987: *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  988: *
  989:          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  990:             IF( WANTV2T ) THEN
  991:                IF( COLMAJOR ) THEN
  992:                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
  993:                ELSE
  994:                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
  995:                END IF
  996:             END IF
  997:          END IF
  998: *
  999: *        Test for negligible sines or cosines
 1000: *
 1001:          DO I = IMIN, IMAX
 1002:             IF( THETA(I) .LT. THRESH ) THEN
 1003:                THETA(I) = ZERO
 1004:             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 1005:                THETA(I) = PIOVER2
 1006:             END IF
 1007:          END DO
 1008:          DO I = IMIN, IMAX-1
 1009:             IF( PHI(I) .LT. THRESH ) THEN
 1010:                PHI(I) = ZERO
 1011:             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 1012:                PHI(I) = PIOVER2
 1013:             END IF
 1014:          END DO
 1015: *
 1016: *        Deflate
 1017: *
 1018:          IF (IMAX .GT. 1) THEN
 1019:             DO WHILE( PHI(IMAX-1) .EQ. ZERO )
 1020:                IMAX = IMAX - 1
 1021:                IF (IMAX .LE. 1) EXIT
 1022:             END DO
 1023:          END IF
 1024:          IF( IMIN .GT. IMAX - 1 )
 1025:      $      IMIN = IMAX - 1
 1026:          IF (IMIN .GT. 1) THEN
 1027:             DO WHILE (PHI(IMIN-1) .NE. ZERO)
 1028:                 IMIN = IMIN - 1
 1029:                 IF (IMIN .LE. 1) EXIT
 1030:             END DO
 1031:          END IF
 1032: *
 1033: *        Repeat main iteration loop
 1034: *
 1035:       END DO
 1036: *
 1037: *     Postprocessing: order THETA from least to greatest
 1038: *
 1039:       DO I = 1, Q
 1040: *
 1041:          MINI = I
 1042:          THETAMIN = THETA(I)
 1043:          DO J = I+1, Q
 1044:             IF( THETA(J) .LT. THETAMIN ) THEN
 1045:                MINI = J
 1046:                THETAMIN = THETA(J)
 1047:             END IF
 1048:          END DO
 1049: *
 1050:          IF( MINI .NE. I ) THEN
 1051:             THETA(MINI) = THETA(I)
 1052:             THETA(I) = THETAMIN
 1053:             IF( COLMAJOR ) THEN
 1054:                IF( WANTU1 )
 1055:      $            CALL ZSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
 1056:                IF( WANTU2 )
 1057:      $            CALL ZSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
 1058:                IF( WANTV1T )
 1059:      $            CALL ZSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
 1060:                IF( WANTV2T )
 1061:      $            CALL ZSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
 1062:      $               LDV2T )
 1063:             ELSE
 1064:                IF( WANTU1 )
 1065:      $            CALL ZSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
 1066:                IF( WANTU2 )
 1067:      $            CALL ZSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
 1068:                IF( WANTV1T )
 1069:      $            CALL ZSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
 1070:                IF( WANTV2T )
 1071:      $            CALL ZSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
 1072:             END IF
 1073:          END IF
 1074: *
 1075:       END DO
 1076: *
 1077:       RETURN
 1078: *
 1079: *     End of ZBBCSD
 1080: *
 1081:       END
 1082: 

CVSweb interface <joel.bertrand@systella.fr>