File:  [local] / rpl / lapack / lapack / zbbcsd.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:15 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b ZBBCSD
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download ZBBCSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zbbcsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zbbcsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zbbcsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
   22: *                          THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
   23: *                          V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
   24: *                          B22D, B22E, RWORK, LRWORK, INFO )
   25: *
   26: *       .. Scalar Arguments ..
   27: *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
   28: *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
   32: *      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
   33: *      $                   PHI( * ), THETA( * ), RWORK( * )
   34: *       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
   35: *      $                   V2T( LDV2T, * )
   36: *       ..
   37: *
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> ZBBCSD computes the CS decomposition of a unitary matrix in
   45: *> bidiagonal-block form,
   46: *>
   47: *>
   48: *>     [ B11 | B12 0  0 ]
   49: *>     [  0  |  0 -I  0 ]
   50: *> X = [----------------]
   51: *>     [ B21 | B22 0  0 ]
   52: *>     [  0  |  0  0  I ]
   53: *>
   54: *>                               [  C | -S  0  0 ]
   55: *>                   [ U1 |    ] [  0 |  0 -I  0 ] [ V1 |    ]**H
   56: *>                 = [---------] [---------------] [---------]   .
   57: *>                   [    | U2 ] [  S |  C  0  0 ] [    | V2 ]
   58: *>                               [  0 |  0  0  I ]
   59: *>
   60: *> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
   61: *> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
   62: *> transposed and/or permuted. This can be done in constant time using
   63: *> the TRANS and SIGNS options. See ZUNCSD for details.)
   64: *>
   65: *> The bidiagonal matrices B11, B12, B21, and B22 are represented
   66: *> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
   67: *>
   68: *> The unitary matrices U1, U2, V1T, and V2T are input/output.
   69: *> The input matrices are pre- or post-multiplied by the appropriate
   70: *> singular vector matrices.
   71: *> \endverbatim
   72: *
   73: *  Arguments:
   74: *  ==========
   75: *
   76: *> \param[in] JOBU1
   77: *> \verbatim
   78: *>          JOBU1 is CHARACTER
   79: *>          = 'Y':      U1 is updated;
   80: *>          otherwise:  U1 is not updated.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] JOBU2
   84: *> \verbatim
   85: *>          JOBU2 is CHARACTER
   86: *>          = 'Y':      U2 is updated;
   87: *>          otherwise:  U2 is not updated.
   88: *> \endverbatim
   89: *>
   90: *> \param[in] JOBV1T
   91: *> \verbatim
   92: *>          JOBV1T is CHARACTER
   93: *>          = 'Y':      V1T is updated;
   94: *>          otherwise:  V1T is not updated.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBV2T
   98: *> \verbatim
   99: *>          JOBV2T is CHARACTER
  100: *>          = 'Y':      V2T is updated;
  101: *>          otherwise:  V2T is not updated.
  102: *> \endverbatim
  103: *>
  104: *> \param[in] TRANS
  105: *> \verbatim
  106: *>          TRANS is CHARACTER
  107: *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
  108: *>                      order;
  109: *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
  110: *>                      major order.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] M
  114: *> \verbatim
  115: *>          M is INTEGER
  116: *>          The number of rows and columns in X, the unitary matrix in
  117: *>          bidiagonal-block form.
  118: *> \endverbatim
  119: *>
  120: *> \param[in] P
  121: *> \verbatim
  122: *>          P is INTEGER
  123: *>          The number of rows in the top-left block of X. 0 <= P <= M.
  124: *> \endverbatim
  125: *>
  126: *> \param[in] Q
  127: *> \verbatim
  128: *>          Q is INTEGER
  129: *>          The number of columns in the top-left block of X.
  130: *>          0 <= Q <= MIN(P,M-P,M-Q).
  131: *> \endverbatim
  132: *>
  133: *> \param[in,out] THETA
  134: *> \verbatim
  135: *>          THETA is DOUBLE PRECISION array, dimension (Q)
  136: *>          On entry, the angles THETA(1),...,THETA(Q) that, along with
  137: *>          PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
  138: *>          form. On exit, the angles whose cosines and sines define the
  139: *>          diagonal blocks in the CS decomposition.
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] PHI
  143: *> \verbatim
  144: *>          PHI is DOUBLE PRECISION array, dimension (Q-1)
  145: *>          The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
  146: *>          THETA(Q), define the matrix in bidiagonal-block form.
  147: *> \endverbatim
  148: *>
  149: *> \param[in,out] U1
  150: *> \verbatim
  151: *>          U1 is COMPLEX*16 array, dimension (LDU1,P)
  152: *>          On entry, a P-by-P matrix. On exit, U1 is postmultiplied
  153: *>          by the left singular vector matrix common to [ B11 ; 0 ] and
  154: *>          [ B12 0 0 ; 0 -I 0 0 ].
  155: *> \endverbatim
  156: *>
  157: *> \param[in] LDU1
  158: *> \verbatim
  159: *>          LDU1 is INTEGER
  160: *>          The leading dimension of the array U1, LDU1 >= MAX(1,P).
  161: *> \endverbatim
  162: *>
  163: *> \param[in,out] U2
  164: *> \verbatim
  165: *>          U2 is COMPLEX*16 array, dimension (LDU2,M-P)
  166: *>          On entry, an (M-P)-by-(M-P) matrix. On exit, U2 is
  167: *>          postmultiplied by the left singular vector matrix common to
  168: *>          [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
  169: *> \endverbatim
  170: *>
  171: *> \param[in] LDU2
  172: *> \verbatim
  173: *>          LDU2 is INTEGER
  174: *>          The leading dimension of the array U2, LDU2 >= MAX(1,M-P).
  175: *> \endverbatim
  176: *>
  177: *> \param[in,out] V1T
  178: *> \verbatim
  179: *>          V1T is COMPLEX*16 array, dimension (LDV1T,Q)
  180: *>          On entry, a Q-by-Q matrix. On exit, V1T is premultiplied
  181: *>          by the conjugate transpose of the right singular vector
  182: *>          matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
  183: *> \endverbatim
  184: *>
  185: *> \param[in] LDV1T
  186: *> \verbatim
  187: *>          LDV1T is INTEGER
  188: *>          The leading dimension of the array V1T, LDV1T >= MAX(1,Q).
  189: *> \endverbatim
  190: *>
  191: *> \param[in,out] V2T
  192: *> \verbatim
  193: *>          V2T is COMPLEX*16 array, dimension (LDV2T,M-Q)
  194: *>          On entry, an (M-Q)-by-(M-Q) matrix. On exit, V2T is
  195: *>          premultiplied by the conjugate transpose of the right
  196: *>          singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
  197: *>          [ B22 0 0 ; 0 0 I ].
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LDV2T
  201: *> \verbatim
  202: *>          LDV2T is INTEGER
  203: *>          The leading dimension of the array V2T, LDV2T >= MAX(1,M-Q).
  204: *> \endverbatim
  205: *>
  206: *> \param[out] B11D
  207: *> \verbatim
  208: *>          B11D is DOUBLE PRECISION array, dimension (Q)
  209: *>          When ZBBCSD converges, B11D contains the cosines of THETA(1),
  210: *>          ..., THETA(Q). If ZBBCSD fails to converge, then B11D
  211: *>          contains the diagonal of the partially reduced top-left
  212: *>          block.
  213: *> \endverbatim
  214: *>
  215: *> \param[out] B11E
  216: *> \verbatim
  217: *>          B11E is DOUBLE PRECISION array, dimension (Q-1)
  218: *>          When ZBBCSD converges, B11E contains zeros. If ZBBCSD fails
  219: *>          to converge, then B11E contains the superdiagonal of the
  220: *>          partially reduced top-left block.
  221: *> \endverbatim
  222: *>
  223: *> \param[out] B12D
  224: *> \verbatim
  225: *>          B12D is DOUBLE PRECISION array, dimension (Q)
  226: *>          When ZBBCSD converges, B12D contains the negative sines of
  227: *>          THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  228: *>          B12D contains the diagonal of the partially reduced top-right
  229: *>          block.
  230: *> \endverbatim
  231: *>
  232: *> \param[out] B12E
  233: *> \verbatim
  234: *>          B12E is DOUBLE PRECISION array, dimension (Q-1)
  235: *>          When ZBBCSD converges, B12E contains zeros. If ZBBCSD fails
  236: *>          to converge, then B12E contains the subdiagonal of the
  237: *>          partially reduced top-right block.
  238: *> \endverbatim
  239: *>
  240: *> \param[out] B21D
  241: *> \verbatim
  242: *>          B21D is DOUBLE PRECISION array, dimension (Q)
  243: *>          When ZBBCSD converges, B21D contains the negative sines of
  244: *>          THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  245: *>          B21D contains the diagonal of the partially reduced bottom-left
  246: *>          block.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] B21E
  250: *> \verbatim
  251: *>          B21E is DOUBLE PRECISION array, dimension (Q-1)
  252: *>          When ZBBCSD converges, B21E contains zeros. If ZBBCSD fails
  253: *>          to converge, then B21E contains the subdiagonal of the
  254: *>          partially reduced bottom-left block.
  255: *> \endverbatim
  256: *>
  257: *> \param[out] B22D
  258: *> \verbatim
  259: *>          B22D is DOUBLE PRECISION array, dimension (Q)
  260: *>          When ZBBCSD converges, B22D contains the negative sines of
  261: *>          THETA(1), ..., THETA(Q). If ZBBCSD fails to converge, then
  262: *>          B22D contains the diagonal of the partially reduced bottom-right
  263: *>          block.
  264: *> \endverbatim
  265: *>
  266: *> \param[out] B22E
  267: *> \verbatim
  268: *>          B22E is DOUBLE PRECISION array, dimension (Q-1)
  269: *>          When ZBBCSD converges, B22E contains zeros. If ZBBCSD fails
  270: *>          to converge, then B22E contains the subdiagonal of the
  271: *>          partially reduced bottom-right block.
  272: *> \endverbatim
  273: *>
  274: *> \param[out] RWORK
  275: *> \verbatim
  276: *>          RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
  277: *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
  278: *> \endverbatim
  279: *>
  280: *> \param[in] LRWORK
  281: *> \verbatim
  282: *>          LRWORK is INTEGER
  283: *>          The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
  284: *>
  285: *>          If LRWORK = -1, then a workspace query is assumed; the
  286: *>          routine only calculates the optimal size of the RWORK array,
  287: *>          returns this value as the first entry of the work array, and
  288: *>          no error message related to LRWORK is issued by XERBLA.
  289: *> \endverbatim
  290: *>
  291: *> \param[out] INFO
  292: *> \verbatim
  293: *>          INFO is INTEGER
  294: *>          = 0:  successful exit.
  295: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  296: *>          > 0:  if ZBBCSD did not converge, INFO specifies the number
  297: *>                of nonzero entries in PHI, and B11D, B11E, etc.,
  298: *>                contain the partially reduced matrix.
  299: *> \endverbatim
  300: *
  301: *> \par Internal Parameters:
  302: *  =========================
  303: *>
  304: *> \verbatim
  305: *>  TOLMUL  DOUBLE PRECISION, default = MAX(10,MIN(100,EPS**(-1/8)))
  306: *>          TOLMUL controls the convergence criterion of the QR loop.
  307: *>          Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
  308: *>          are within TOLMUL*EPS of either bound.
  309: *> \endverbatim
  310: *
  311: *> \par References:
  312: *  ================
  313: *>
  314: *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
  315: *>      Algorithms, 50(1):33-65, 2009.
  316: *
  317: *  Authors:
  318: *  ========
  319: *
  320: *> \author Univ. of Tennessee
  321: *> \author Univ. of California Berkeley
  322: *> \author Univ. of Colorado Denver
  323: *> \author NAG Ltd.
  324: *
  325: *> \ingroup complex16OTHERcomputational
  326: *
  327: *  =====================================================================
  328:       SUBROUTINE ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
  329:      $                   THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
  330:      $                   V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
  331:      $                   B22D, B22E, RWORK, LRWORK, INFO )
  332: *
  333: *  -- LAPACK computational routine --
  334: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  335: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  336: *
  337: *     .. Scalar Arguments ..
  338:       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
  339:       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
  340: *     ..
  341: *     .. Array Arguments ..
  342:       DOUBLE PRECISION   B11D( * ), B11E( * ), B12D( * ), B12E( * ),
  343:      $                   B21D( * ), B21E( * ), B22D( * ), B22E( * ),
  344:      $                   PHI( * ), THETA( * ), RWORK( * )
  345:       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
  346:      $                   V2T( LDV2T, * )
  347: *     ..
  348: *
  349: *  ===================================================================
  350: *
  351: *     .. Parameters ..
  352:       INTEGER            MAXITR
  353:       PARAMETER          ( MAXITR = 6 )
  354:       DOUBLE PRECISION   HUNDRED, MEIGHTH, ONE, TEN, ZERO
  355:       PARAMETER          ( HUNDRED = 100.0D0, MEIGHTH = -0.125D0,
  356:      $                     ONE = 1.0D0, TEN = 10.0D0, ZERO = 0.0D0 )
  357:       COMPLEX*16         NEGONECOMPLEX
  358:       PARAMETER          ( NEGONECOMPLEX = (-1.0D0,0.0D0) )
  359:       DOUBLE PRECISION   PIOVER2
  360:       PARAMETER ( PIOVER2 = 1.57079632679489661923132169163975144210D0 )
  361: *     ..
  362: *     .. Local Scalars ..
  363:       LOGICAL            COLMAJOR, LQUERY, RESTART11, RESTART12,
  364:      $                   RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
  365:      $                   WANTV2T
  366:       INTEGER            I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
  367:      $                   IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
  368:      $                   LRWORKMIN, LRWORKOPT, MAXIT, MINI
  369:       DOUBLE PRECISION   B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
  370:      $                   EPS, MU, NU, R, SIGMA11, SIGMA21,
  371:      $                   TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
  372:      $                   UNFL, X1, X2, Y1, Y2
  373: *
  374:       EXTERNAL           DLARTGP, DLARTGS, DLAS2, XERBLA, ZLASR, ZSCAL,
  375:      $                   ZSWAP
  376: *     ..
  377: *     .. External Functions ..
  378:       DOUBLE PRECISION   DLAMCH
  379:       LOGICAL            LSAME
  380:       EXTERNAL           LSAME, DLAMCH
  381: *     ..
  382: *     .. Intrinsic Functions ..
  383:       INTRINSIC          ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
  384: *     ..
  385: *     .. Executable Statements ..
  386: *
  387: *     Test input arguments
  388: *
  389:       INFO = 0
  390:       LQUERY = LRWORK .EQ. -1
  391:       WANTU1 = LSAME( JOBU1, 'Y' )
  392:       WANTU2 = LSAME( JOBU2, 'Y' )
  393:       WANTV1T = LSAME( JOBV1T, 'Y' )
  394:       WANTV2T = LSAME( JOBV2T, 'Y' )
  395:       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
  396: *
  397:       IF( M .LT. 0 ) THEN
  398:          INFO = -6
  399:       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
  400:          INFO = -7
  401:       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
  402:          INFO = -8
  403:       ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
  404:          INFO = -8
  405:       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
  406:          INFO = -12
  407:       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
  408:          INFO = -14
  409:       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
  410:          INFO = -16
  411:       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
  412:          INFO = -18
  413:       END IF
  414: *
  415: *     Quick return if Q = 0
  416: *
  417:       IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
  418:          LRWORKMIN = 1
  419:          RWORK(1) = LRWORKMIN
  420:          RETURN
  421:       END IF
  422: *
  423: *     Compute workspace
  424: *
  425:       IF( INFO .EQ. 0 ) THEN
  426:          IU1CS = 1
  427:          IU1SN = IU1CS + Q
  428:          IU2CS = IU1SN + Q
  429:          IU2SN = IU2CS + Q
  430:          IV1TCS = IU2SN + Q
  431:          IV1TSN = IV1TCS + Q
  432:          IV2TCS = IV1TSN + Q
  433:          IV2TSN = IV2TCS + Q
  434:          LRWORKOPT = IV2TSN + Q - 1
  435:          LRWORKMIN = LRWORKOPT
  436:          RWORK(1) = LRWORKOPT
  437:          IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
  438:             INFO = -28
  439:          END IF
  440:       END IF
  441: *
  442:       IF( INFO .NE. 0 ) THEN
  443:          CALL XERBLA( 'ZBBCSD', -INFO )
  444:          RETURN
  445:       ELSE IF( LQUERY ) THEN
  446:          RETURN
  447:       END IF
  448: *
  449: *     Get machine constants
  450: *
  451:       EPS = DLAMCH( 'Epsilon' )
  452:       UNFL = DLAMCH( 'Safe minimum' )
  453:       TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
  454:       TOL = TOLMUL*EPS
  455:       THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
  456: *
  457: *     Test for negligible sines or cosines
  458: *
  459:       DO I = 1, Q
  460:          IF( THETA(I) .LT. THRESH ) THEN
  461:             THETA(I) = ZERO
  462:          ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
  463:             THETA(I) = PIOVER2
  464:          END IF
  465:       END DO
  466:       DO I = 1, Q-1
  467:          IF( PHI(I) .LT. THRESH ) THEN
  468:             PHI(I) = ZERO
  469:          ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
  470:             PHI(I) = PIOVER2
  471:          END IF
  472:       END DO
  473: *
  474: *     Initial deflation
  475: *
  476:       IMAX = Q
  477:       DO WHILE( IMAX .GT. 1 )
  478:          IF( PHI(IMAX-1) .NE. ZERO ) THEN
  479:             EXIT
  480:          END IF
  481:          IMAX = IMAX - 1
  482:       END DO
  483:       IMIN = IMAX - 1
  484:       IF  ( IMIN .GT. 1 ) THEN
  485:          DO WHILE( PHI(IMIN-1) .NE. ZERO )
  486:             IMIN = IMIN - 1
  487:             IF  ( IMIN .LE. 1 ) EXIT
  488:          END DO
  489:       END IF
  490: *
  491: *     Initialize iteration counter
  492: *
  493:       MAXIT = MAXITR*Q*Q
  494:       ITER = 0
  495: *
  496: *     Begin main iteration loop
  497: *
  498:       DO WHILE( IMAX .GT. 1 )
  499: *
  500: *        Compute the matrix entries
  501: *
  502:          B11D(IMIN) = COS( THETA(IMIN) )
  503:          B21D(IMIN) = -SIN( THETA(IMIN) )
  504:          DO I = IMIN, IMAX - 1
  505:             B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
  506:             B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
  507:             B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
  508:             B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
  509:             B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
  510:             B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
  511:             B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
  512:             B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
  513:          END DO
  514:          B12D(IMAX) = SIN( THETA(IMAX) )
  515:          B22D(IMAX) = COS( THETA(IMAX) )
  516: *
  517: *        Abort if not converging; otherwise, increment ITER
  518: *
  519:          IF( ITER .GT. MAXIT ) THEN
  520:             INFO = 0
  521:             DO I = 1, Q
  522:                IF( PHI(I) .NE. ZERO )
  523:      $            INFO = INFO + 1
  524:             END DO
  525:             RETURN
  526:          END IF
  527: *
  528:          ITER = ITER + IMAX - IMIN
  529: *
  530: *        Compute shifts
  531: *
  532:          THETAMAX = THETA(IMIN)
  533:          THETAMIN = THETA(IMIN)
  534:          DO I = IMIN+1, IMAX
  535:             IF( THETA(I) > THETAMAX )
  536:      $         THETAMAX = THETA(I)
  537:             IF( THETA(I) < THETAMIN )
  538:      $         THETAMIN = THETA(I)
  539:          END DO
  540: *
  541:          IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
  542: *
  543: *           Zero on diagonals of B11 and B22; induce deflation with a
  544: *           zero shift
  545: *
  546:             MU = ZERO
  547:             NU = ONE
  548: *
  549:          ELSE IF( THETAMIN .LT. THRESH ) THEN
  550: *
  551: *           Zero on diagonals of B12 and B22; induce deflation with a
  552: *           zero shift
  553: *
  554:             MU = ONE
  555:             NU = ZERO
  556: *
  557:          ELSE
  558: *
  559: *           Compute shifts for B11 and B21 and use the lesser
  560: *
  561:             CALL DLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
  562:      $                  DUMMY )
  563:             CALL DLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
  564:      $                  DUMMY )
  565: *
  566:             IF( SIGMA11 .LE. SIGMA21 ) THEN
  567:                MU = SIGMA11
  568:                NU = SQRT( ONE - MU**2 )
  569:                IF( MU .LT. THRESH ) THEN
  570:                   MU = ZERO
  571:                   NU = ONE
  572:                END IF
  573:             ELSE
  574:                NU = SIGMA21
  575:                MU = SQRT( 1.0 - NU**2 )
  576:                IF( NU .LT. THRESH ) THEN
  577:                   MU = ONE
  578:                   NU = ZERO
  579:                END IF
  580:             END IF
  581:          END IF
  582: *
  583: *        Rotate to produce bulges in B11 and B21
  584: *
  585:          IF( MU .LE. NU ) THEN
  586:             CALL DLARTGS( B11D(IMIN), B11E(IMIN), MU,
  587:      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  588:          ELSE
  589:             CALL DLARTGS( B21D(IMIN), B21E(IMIN), NU,
  590:      $                    RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
  591:          END IF
  592: *
  593:          TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
  594:      $          RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
  595:          B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
  596:      $                RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
  597:          B11D(IMIN) = TEMP
  598:          B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
  599:          B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
  600:          TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
  601:      $          RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
  602:          B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
  603:      $                RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
  604:          B21D(IMIN) = TEMP
  605:          B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
  606:          B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
  607: *
  608: *        Compute THETA(IMIN)
  609: *
  610:          THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
  611:      $                   SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
  612: *
  613: *        Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
  614: *
  615:          IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
  616:             CALL DLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
  617:      $                    RWORK(IU1CS+IMIN-1), R )
  618:          ELSE IF( MU .LE. NU ) THEN
  619:             CALL DLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
  620:      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  621:          ELSE
  622:             CALL DLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
  623:      $                    RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
  624:          END IF
  625:          IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
  626:             CALL DLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
  627:      $                    RWORK(IU2CS+IMIN-1), R )
  628:          ELSE IF( NU .LT. MU ) THEN
  629:             CALL DLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
  630:      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  631:          ELSE
  632:             CALL DLARTGS( B22D(IMIN), B22E(IMIN), MU,
  633:      $                    RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
  634:          END IF
  635:          RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
  636:          RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
  637: *
  638:          TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
  639:      $          RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
  640:          B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
  641:      $                  RWORK(IU1SN+IMIN-1)*B11E(IMIN)
  642:          B11E(IMIN) = TEMP
  643:          IF( IMAX .GT. IMIN+1 ) THEN
  644:             B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
  645:             B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
  646:          END IF
  647:          TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
  648:      $          RWORK(IU1SN+IMIN-1)*B12E(IMIN)
  649:          B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
  650:      $                RWORK(IU1SN+IMIN-1)*B12D(IMIN)
  651:          B12D(IMIN) = TEMP
  652:          B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
  653:          B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
  654:          TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
  655:      $          RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
  656:          B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
  657:      $                  RWORK(IU2SN+IMIN-1)*B21E(IMIN)
  658:          B21E(IMIN) = TEMP
  659:          IF( IMAX .GT. IMIN+1 ) THEN
  660:             B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
  661:             B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
  662:          END IF
  663:          TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
  664:      $          RWORK(IU2SN+IMIN-1)*B22E(IMIN)
  665:          B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
  666:      $                RWORK(IU2SN+IMIN-1)*B22D(IMIN)
  667:          B22D(IMIN) = TEMP
  668:          B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
  669:          B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
  670: *
  671: *        Inner loop: chase bulges from B11(IMIN,IMIN+2),
  672: *        B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
  673: *        bottom-right
  674: *
  675:          DO I = IMIN+1, IMAX-1
  676: *
  677: *           Compute PHI(I-1)
  678: *
  679:             X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
  680:             X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
  681:             Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
  682:             Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
  683: *
  684:             PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
  685: *
  686: *           Determine if there are bulges to chase or if a new direct
  687: *           summand has been reached
  688: *
  689:             RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
  690:             RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
  691:             RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  692:             RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  693: *
  694: *           If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
  695: *           B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
  696: *           chasing by applying the original shift again.
  697: *
  698:             IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
  699:                CALL DLARTGP( X2, X1, RWORK(IV1TSN+I-1),
  700:      $                       RWORK(IV1TCS+I-1), R )
  701:             ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
  702:                CALL DLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
  703:      $                       RWORK(IV1TCS+I-1), R )
  704:             ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
  705:                CALL DLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
  706:      $                       RWORK(IV1TCS+I-1), R )
  707:             ELSE IF( MU .LE. NU ) THEN
  708:                CALL DLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
  709:      $                       RWORK(IV1TSN+I-1) )
  710:             ELSE
  711:                CALL DLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
  712:      $                       RWORK(IV1TSN+I-1) )
  713:             END IF
  714:             RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
  715:             RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
  716:             IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  717:                CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
  718:      $                       RWORK(IV2TCS+I-1-1), R )
  719:             ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  720:                CALL DLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
  721:      $                       RWORK(IV2TCS+I-1-1), R )
  722:             ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  723:                CALL DLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
  724:      $                       RWORK(IV2TCS+I-1-1), R )
  725:             ELSE IF( NU .LT. MU ) THEN
  726:                CALL DLARTGS( B12E(I-1), B12D(I), NU,
  727:      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  728:             ELSE
  729:                CALL DLARTGS( B22E(I-1), B22D(I), MU,
  730:      $                       RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
  731:             END IF
  732: *
  733:             TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
  734:             B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
  735:      $                RWORK(IV1TSN+I-1)*B11D(I)
  736:             B11D(I) = TEMP
  737:             B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
  738:             B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
  739:             TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
  740:             B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
  741:      $                RWORK(IV1TSN+I-1)*B21D(I)
  742:             B21D(I) = TEMP
  743:             B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
  744:             B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
  745:             TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
  746:      $             RWORK(IV2TSN+I-1-1)*B12D(I)
  747:             B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
  748:      $                RWORK(IV2TSN+I-1-1)*B12E(I-1)
  749:             B12E(I-1) = TEMP
  750:             B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
  751:             B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
  752:             TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
  753:      $             RWORK(IV2TSN+I-1-1)*B22D(I)
  754:             B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
  755:      $                RWORK(IV2TSN+I-1-1)*B22E(I-1)
  756:             B22E(I-1) = TEMP
  757:             B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
  758:             B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
  759: *
  760: *           Compute THETA(I)
  761: *
  762:             X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
  763:             X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
  764:             Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
  765:             Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
  766: *
  767:             THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
  768: *
  769: *           Determine if there are bulges to chase or if a new direct
  770: *           summand has been reached
  771: *
  772:             RESTART11 =   B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
  773:             RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
  774:             RESTART21 =   B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
  775:             RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
  776: *
  777: *           If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
  778: *           B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
  779: *           chasing by applying the original shift again.
  780: *
  781:             IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
  782:                CALL DLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
  783:      $                       R )
  784:             ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
  785:                CALL DLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
  786:      $                       RWORK(IU1CS+I-1), R )
  787:             ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
  788:                CALL DLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
  789:      $                       RWORK(IU1CS+I-1), R )
  790:             ELSE IF( MU .LE. NU ) THEN
  791:                CALL DLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
  792:      $                       RWORK(IU1SN+I-1) )
  793:             ELSE
  794:                CALL DLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
  795:      $                       RWORK(IU1SN+I-1) )
  796:             END IF
  797:             IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
  798:                CALL DLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
  799:      $                       R )
  800:             ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
  801:                CALL DLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
  802:      $                       RWORK(IU2CS+I-1), R )
  803:             ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
  804:                CALL DLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
  805:      $                       RWORK(IU2CS+I-1), R )
  806:             ELSE IF( NU .LT. MU ) THEN
  807:                CALL DLARTGS( B21E(I), B21E(I+1), NU, RWORK(IU2CS+I-1),
  808:      $                       RWORK(IU2SN+I-1) )
  809:             ELSE
  810:                CALL DLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
  811:      $                       RWORK(IU2SN+I-1) )
  812:             END IF
  813:             RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
  814:             RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
  815: *
  816:             TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
  817:             B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
  818:      $                  RWORK(IU1SN+I-1)*B11E(I)
  819:             B11E(I) = TEMP
  820:             IF( I .LT. IMAX - 1 ) THEN
  821:                B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
  822:                B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
  823:             END IF
  824:             TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
  825:             B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
  826:      $                  RWORK(IU2SN+I-1)*B21E(I)
  827:             B21E(I) = TEMP
  828:             IF( I .LT. IMAX - 1 ) THEN
  829:                B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
  830:                B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
  831:             END IF
  832:             TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
  833:             B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
  834:      $                RWORK(IU1SN+I-1)*B12D(I)
  835:             B12D(I) = TEMP
  836:             B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
  837:             B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
  838:             TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
  839:             B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
  840:      $                RWORK(IU2SN+I-1)*B22D(I)
  841:             B22D(I) = TEMP
  842:             B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
  843:             B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
  844: *
  845:          END DO
  846: *
  847: *        Compute PHI(IMAX-1)
  848: *
  849:          X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
  850:      $        COS(THETA(IMAX-1))*B21E(IMAX-1)
  851:          Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
  852:      $        COS(THETA(IMAX-1))*B22D(IMAX-1)
  853:          Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
  854: *
  855:          PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
  856: *
  857: *        Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
  858: *
  859:          RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
  860:          RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
  861: *
  862:          IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
  863:             CALL DLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
  864:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  865:          ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
  866:             CALL DLARTGP( B12BULGE, B12D(IMAX-1),
  867:      $                    RWORK(IV2TSN+IMAX-1-1),
  868:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  869:          ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
  870:             CALL DLARTGP( B22BULGE, B22D(IMAX-1),
  871:      $                    RWORK(IV2TSN+IMAX-1-1),
  872:      $                    RWORK(IV2TCS+IMAX-1-1), R )
  873:          ELSE IF( NU .LT. MU ) THEN
  874:             CALL DLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
  875:      $                    RWORK(IV2TCS+IMAX-1-1),
  876:      $                    RWORK(IV2TSN+IMAX-1-1) )
  877:          ELSE
  878:             CALL DLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
  879:      $                    RWORK(IV2TCS+IMAX-1-1),
  880:      $                    RWORK(IV2TSN+IMAX-1-1) )
  881:          END IF
  882: *
  883:          TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
  884:      $          RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
  885:          B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
  886:      $                RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
  887:          B12E(IMAX-1) = TEMP
  888:          TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
  889:      $          RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
  890:          B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
  891:      $                RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
  892:          B22E(IMAX-1) = TEMP
  893: *
  894: *        Update singular vectors
  895: *
  896:          IF( WANTU1 ) THEN
  897:             IF( COLMAJOR ) THEN
  898:                CALL ZLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
  899:      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  900:      $                     U1(1,IMIN), LDU1 )
  901:             ELSE
  902:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
  903:      $                     RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
  904:      $                     U1(IMIN,1), LDU1 )
  905:             END IF
  906:          END IF
  907:          IF( WANTU2 ) THEN
  908:             IF( COLMAJOR ) THEN
  909:                CALL ZLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
  910:      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  911:      $                     U2(1,IMIN), LDU2 )
  912:             ELSE
  913:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
  914:      $                     RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
  915:      $                     U2(IMIN,1), LDU2 )
  916:             END IF
  917:          END IF
  918:          IF( WANTV1T ) THEN
  919:             IF( COLMAJOR ) THEN
  920:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
  921:      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  922:      $                     V1T(IMIN,1), LDV1T )
  923:             ELSE
  924:                CALL ZLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
  925:      $                     RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
  926:      $                     V1T(1,IMIN), LDV1T )
  927:             END IF
  928:          END IF
  929:          IF( WANTV2T ) THEN
  930:             IF( COLMAJOR ) THEN
  931:                CALL ZLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
  932:      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  933:      $                     V2T(IMIN,1), LDV2T )
  934:             ELSE
  935:                CALL ZLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
  936:      $                     RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
  937:      $                     V2T(1,IMIN), LDV2T )
  938:             END IF
  939:          END IF
  940: *
  941: *        Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
  942: *
  943:          IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
  944:             B11D(IMAX) = -B11D(IMAX)
  945:             B21D(IMAX) = -B21D(IMAX)
  946:             IF( WANTV1T ) THEN
  947:                IF( COLMAJOR ) THEN
  948:                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
  949:                ELSE
  950:                   CALL ZSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
  951:                END IF
  952:             END IF
  953:          END IF
  954: *
  955: *        Compute THETA(IMAX)
  956: *
  957:          X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
  958:      $        SIN(PHI(IMAX-1))*B12E(IMAX-1)
  959:          Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
  960:      $        SIN(PHI(IMAX-1))*B22E(IMAX-1)
  961: *
  962:          THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
  963: *
  964: *        Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
  965: *        and B22(IMAX,IMAX-1)
  966: *
  967:          IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
  968:             B12D(IMAX) = -B12D(IMAX)
  969:             IF( WANTU1 ) THEN
  970:                IF( COLMAJOR ) THEN
  971:                   CALL ZSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
  972:                ELSE
  973:                   CALL ZSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
  974:                END IF
  975:             END IF
  976:          END IF
  977:          IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
  978:             B22D(IMAX) = -B22D(IMAX)
  979:             IF( WANTU2 ) THEN
  980:                IF( COLMAJOR ) THEN
  981:                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
  982:                ELSE
  983:                   CALL ZSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
  984:                END IF
  985:             END IF
  986:          END IF
  987: *
  988: *        Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
  989: *
  990:          IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
  991:             IF( WANTV2T ) THEN
  992:                IF( COLMAJOR ) THEN
  993:                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
  994:                ELSE
  995:                   CALL ZSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
  996:                END IF
  997:             END IF
  998:          END IF
  999: *
 1000: *        Test for negligible sines or cosines
 1001: *
 1002:          DO I = IMIN, IMAX
 1003:             IF( THETA(I) .LT. THRESH ) THEN
 1004:                THETA(I) = ZERO
 1005:             ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
 1006:                THETA(I) = PIOVER2
 1007:             END IF
 1008:          END DO
 1009:          DO I = IMIN, IMAX-1
 1010:             IF( PHI(I) .LT. THRESH ) THEN
 1011:                PHI(I) = ZERO
 1012:             ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
 1013:                PHI(I) = PIOVER2
 1014:             END IF
 1015:          END DO
 1016: *
 1017: *        Deflate
 1018: *
 1019:          IF (IMAX .GT. 1) THEN
 1020:             DO WHILE( PHI(IMAX-1) .EQ. ZERO )
 1021:                IMAX = IMAX - 1
 1022:                IF (IMAX .LE. 1) EXIT
 1023:             END DO
 1024:          END IF
 1025:          IF( IMIN .GT. IMAX - 1 )
 1026:      $      IMIN = IMAX - 1
 1027:          IF (IMIN .GT. 1) THEN
 1028:             DO WHILE (PHI(IMIN-1) .NE. ZERO)
 1029:                 IMIN = IMIN - 1
 1030:                 IF (IMIN .LE. 1) EXIT
 1031:             END DO
 1032:          END IF
 1033: *
 1034: *        Repeat main iteration loop
 1035: *
 1036:       END DO
 1037: *
 1038: *     Postprocessing: order THETA from least to greatest
 1039: *
 1040:       DO I = 1, Q
 1041: *
 1042:          MINI = I
 1043:          THETAMIN = THETA(I)
 1044:          DO J = I+1, Q
 1045:             IF( THETA(J) .LT. THETAMIN ) THEN
 1046:                MINI = J
 1047:                THETAMIN = THETA(J)
 1048:             END IF
 1049:          END DO
 1050: *
 1051:          IF( MINI .NE. I ) THEN
 1052:             THETA(MINI) = THETA(I)
 1053:             THETA(I) = THETAMIN
 1054:             IF( COLMAJOR ) THEN
 1055:                IF( WANTU1 )
 1056:      $            CALL ZSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
 1057:                IF( WANTU2 )
 1058:      $            CALL ZSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
 1059:                IF( WANTV1T )
 1060:      $            CALL ZSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
 1061:                IF( WANTV2T )
 1062:      $            CALL ZSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
 1063:      $               LDV2T )
 1064:             ELSE
 1065:                IF( WANTU1 )
 1066:      $            CALL ZSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
 1067:                IF( WANTU2 )
 1068:      $            CALL ZSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
 1069:                IF( WANTV1T )
 1070:      $            CALL ZSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
 1071:                IF( WANTV2T )
 1072:      $            CALL ZSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
 1073:             END IF
 1074:          END IF
 1075: *
 1076:       END DO
 1077: *
 1078:       RETURN
 1079: *
 1080: *     End of ZBBCSD
 1081: *
 1082:       END
 1083: 

CVSweb interface <joel.bertrand@systella.fr>