File:  [local] / rpl / lapack / lapack / dtzrzf.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:14 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTZRZF
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTZRZF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrzf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrzf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrzf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, LWORK, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
   37: *> to upper triangular form by means of orthogonal transformations.
   38: *>
   39: *> The upper trapezoidal matrix A is factored as
   40: *>
   41: *>    A = ( R  0 ) * Z,
   42: *>
   43: *> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
   44: *> triangular matrix.
   45: *> \endverbatim
   46: *
   47: *  Arguments:
   48: *  ==========
   49: *
   50: *> \param[in] M
   51: *> \verbatim
   52: *>          M is INTEGER
   53: *>          The number of rows of the matrix A.  M >= 0.
   54: *> \endverbatim
   55: *>
   56: *> \param[in] N
   57: *> \verbatim
   58: *>          N is INTEGER
   59: *>          The number of columns of the matrix A.  N >= M.
   60: *> \endverbatim
   61: *>
   62: *> \param[in,out] A
   63: *> \verbatim
   64: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   65: *>          On entry, the leading M-by-N upper trapezoidal part of the
   66: *>          array A must contain the matrix to be factorized.
   67: *>          On exit, the leading M-by-M upper triangular part of A
   68: *>          contains the upper triangular matrix R, and elements M+1 to
   69: *>          N of the first M rows of A, with the array TAU, represent the
   70: *>          orthogonal matrix Z as a product of M elementary reflectors.
   71: *> \endverbatim
   72: *>
   73: *> \param[in] LDA
   74: *> \verbatim
   75: *>          LDA is INTEGER
   76: *>          The leading dimension of the array A.  LDA >= max(1,M).
   77: *> \endverbatim
   78: *>
   79: *> \param[out] TAU
   80: *> \verbatim
   81: *>          TAU is DOUBLE PRECISION array, dimension (M)
   82: *>          The scalar factors of the elementary reflectors.
   83: *> \endverbatim
   84: *>
   85: *> \param[out] WORK
   86: *> \verbatim
   87: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
   88: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] LWORK
   92: *> \verbatim
   93: *>          LWORK is INTEGER
   94: *>          The dimension of the array WORK.  LWORK >= max(1,M).
   95: *>          For optimum performance LWORK >= M*NB, where NB is
   96: *>          the optimal blocksize.
   97: *>
   98: *>          If LWORK = -1, then a workspace query is assumed; the routine
   99: *>          only calculates the optimal size of the WORK array, returns
  100: *>          this value as the first entry of the WORK array, and no error
  101: *>          message related to LWORK is issued by XERBLA.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] INFO
  105: *> \verbatim
  106: *>          INFO is INTEGER
  107: *>          = 0:  successful exit
  108: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  109: *> \endverbatim
  110: *
  111: *  Authors:
  112: *  ========
  113: *
  114: *> \author Univ. of Tennessee
  115: *> \author Univ. of California Berkeley
  116: *> \author Univ. of Colorado Denver
  117: *> \author NAG Ltd.
  118: *
  119: *> \ingroup doubleOTHERcomputational
  120: *
  121: *> \par Contributors:
  122: *  ==================
  123: *>
  124: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  125: *
  126: *> \par Further Details:
  127: *  =====================
  128: *>
  129: *> \verbatim
  130: *>
  131: *>  The N-by-N matrix Z can be computed by
  132: *>
  133: *>     Z =  Z(1)*Z(2)* ... *Z(M)
  134: *>
  135: *>  where each N-by-N Z(k) is given by
  136: *>
  137: *>     Z(k) = I - tau(k)*v(k)*v(k)**T
  138: *>
  139: *>  with v(k) is the kth row vector of the M-by-N matrix
  140: *>
  141: *>     V = ( I   A(:,M+1:N) )
  142: *>
  143: *>  I is the M-by-M identity matrix, A(:,M+1:N)
  144: *>  is the output stored in A on exit from DTZRZF,
  145: *>  and tau(k) is the kth element of the array TAU.
  146: *>
  147: *> \endverbatim
  148: *>
  149: *  =====================================================================
  150:       SUBROUTINE DTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
  151: *
  152: *  -- LAPACK computational routine --
  153: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  154: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  155: *
  156: *     .. Scalar Arguments ..
  157:       INTEGER            INFO, LDA, LWORK, M, N
  158: *     ..
  159: *     .. Array Arguments ..
  160:       DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
  161: *     ..
  162: *
  163: *  =====================================================================
  164: *
  165: *     .. Parameters ..
  166:       DOUBLE PRECISION   ZERO
  167:       PARAMETER          ( ZERO = 0.0D+0 )
  168: *     ..
  169: *     .. Local Scalars ..
  170:       LOGICAL            LQUERY
  171:       INTEGER            I, IB, IWS, KI, KK, LDWORK, LWKMIN, LWKOPT,
  172:      $                   M1, MU, NB, NBMIN, NX
  173: *     ..
  174: *     .. External Subroutines ..
  175:       EXTERNAL           XERBLA, DLARZB, DLARZT, DLATRZ
  176: *     ..
  177: *     .. Intrinsic Functions ..
  178:       INTRINSIC          MAX, MIN
  179: *     ..
  180: *     .. External Functions ..
  181:       INTEGER            ILAENV
  182:       EXTERNAL           ILAENV
  183: *     ..
  184: *     .. Executable Statements ..
  185: *
  186: *     Test the input arguments
  187: *
  188:       INFO = 0
  189:       LQUERY = ( LWORK.EQ.-1 )
  190:       IF( M.LT.0 ) THEN
  191:          INFO = -1
  192:       ELSE IF( N.LT.M ) THEN
  193:          INFO = -2
  194:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  195:          INFO = -4
  196:       END IF
  197: *
  198:       IF( INFO.EQ.0 ) THEN
  199:          IF( M.EQ.0 .OR. M.EQ.N ) THEN
  200:             LWKOPT = 1
  201:             LWKMIN = 1
  202:          ELSE
  203: *
  204: *           Determine the block size.
  205: *
  206:             NB = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
  207:             LWKOPT = M*NB
  208:             LWKMIN = MAX( 1, M )
  209:          END IF
  210:          WORK( 1 ) = LWKOPT
  211: *
  212:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  213:             INFO = -7
  214:          END IF
  215:       END IF
  216: *
  217:       IF( INFO.NE.0 ) THEN
  218:          CALL XERBLA( 'DTZRZF', -INFO )
  219:          RETURN
  220:       ELSE IF( LQUERY ) THEN
  221:          RETURN
  222:       END IF
  223: *
  224: *     Quick return if possible
  225: *
  226:       IF( M.EQ.0 ) THEN
  227:          RETURN
  228:       ELSE IF( M.EQ.N ) THEN
  229:          DO 10 I = 1, N
  230:             TAU( I ) = ZERO
  231:    10    CONTINUE
  232:          RETURN
  233:       END IF
  234: *
  235:       NBMIN = 2
  236:       NX = 1
  237:       IWS = M
  238:       IF( NB.GT.1 .AND. NB.LT.M ) THEN
  239: *
  240: *        Determine when to cross over from blocked to unblocked code.
  241: *
  242:          NX = MAX( 0, ILAENV( 3, 'DGERQF', ' ', M, N, -1, -1 ) )
  243:          IF( NX.LT.M ) THEN
  244: *
  245: *           Determine if workspace is large enough for blocked code.
  246: *
  247:             LDWORK = M
  248:             IWS = LDWORK*NB
  249:             IF( LWORK.LT.IWS ) THEN
  250: *
  251: *              Not enough workspace to use optimal NB:  reduce NB and
  252: *              determine the minimum value of NB.
  253: *
  254:                NB = LWORK / LDWORK
  255:                NBMIN = MAX( 2, ILAENV( 2, 'DGERQF', ' ', M, N, -1,
  256:      $                 -1 ) )
  257:             END IF
  258:          END IF
  259:       END IF
  260: *
  261:       IF( NB.GE.NBMIN .AND. NB.LT.M .AND. NX.LT.M ) THEN
  262: *
  263: *        Use blocked code initially.
  264: *        The last kk rows are handled by the block method.
  265: *
  266:          M1 = MIN( M+1, N )
  267:          KI = ( ( M-NX-1 ) / NB )*NB
  268:          KK = MIN( M, KI+NB )
  269: *
  270:          DO 20 I = M - KK + KI + 1, M - KK + 1, -NB
  271:             IB = MIN( M-I+1, NB )
  272: *
  273: *           Compute the TZ factorization of the current block
  274: *           A(i:i+ib-1,i:n)
  275: *
  276:             CALL DLATRZ( IB, N-I+1, N-M, A( I, I ), LDA, TAU( I ),
  277:      $                   WORK )
  278:             IF( I.GT.1 ) THEN
  279: *
  280: *              Form the triangular factor of the block reflector
  281: *              H = H(i+ib-1) . . . H(i+1) H(i)
  282: *
  283:                CALL DLARZT( 'Backward', 'Rowwise', N-M, IB, A( I, M1 ),
  284:      $                      LDA, TAU( I ), WORK, LDWORK )
  285: *
  286: *              Apply H to A(1:i-1,i:n) from the right
  287: *
  288:                CALL DLARZB( 'Right', 'No transpose', 'Backward',
  289:      $                      'Rowwise', I-1, N-I+1, IB, N-M, A( I, M1 ),
  290:      $                      LDA, WORK, LDWORK, A( 1, I ), LDA,
  291:      $                      WORK( IB+1 ), LDWORK )
  292:             END IF
  293:    20    CONTINUE
  294:          MU = I + NB - 1
  295:       ELSE
  296:          MU = M
  297:       END IF
  298: *
  299: *     Use unblocked code to factor the last or only block
  300: *
  301:       IF( MU.GT.0 )
  302:      $   CALL DLATRZ( MU, N, N-M, A, LDA, TAU, WORK )
  303: *
  304:       WORK( 1 ) = LWKOPT
  305: *
  306:       RETURN
  307: *
  308: *     End of DTZRZF
  309: *
  310:       END

CVSweb interface <joel.bertrand@systella.fr>