File:  [local] / rpl / lapack / lapack / dtzrqf.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:22:28 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour globale de Lapack 3.2.2.

    1:       SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2) --
    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    6: *     June 2010
    7: *
    8: *     .. Scalar Arguments ..
    9:       INTEGER            INFO, LDA, M, N
   10: *     ..
   11: *     .. Array Arguments ..
   12:       DOUBLE PRECISION   A( LDA, * ), TAU( * )
   13: *     ..
   14: *
   15: *  Purpose
   16: *  =======
   17: *
   18: *  This routine is deprecated and has been replaced by routine DTZRZF.
   19: *
   20: *  DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
   21: *  to upper triangular form by means of orthogonal transformations.
   22: *
   23: *  The upper trapezoidal matrix A is factored as
   24: *
   25: *     A = ( R  0 ) * Z,
   26: *
   27: *  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
   28: *  triangular matrix.
   29: *
   30: *  Arguments
   31: *  =========
   32: *
   33: *  M       (input) INTEGER
   34: *          The number of rows of the matrix A.  M >= 0.
   35: *
   36: *  N       (input) INTEGER
   37: *          The number of columns of the matrix A.  N >= M.
   38: *
   39: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   40: *          On entry, the leading M-by-N upper trapezoidal part of the
   41: *          array A must contain the matrix to be factorized.
   42: *          On exit, the leading M-by-M upper triangular part of A
   43: *          contains the upper triangular matrix R, and elements M+1 to
   44: *          N of the first M rows of A, with the array TAU, represent the
   45: *          orthogonal matrix Z as a product of M elementary reflectors.
   46: *
   47: *  LDA     (input) INTEGER
   48: *          The leading dimension of the array A.  LDA >= max(1,M).
   49: *
   50: *  TAU     (output) DOUBLE PRECISION array, dimension (M)
   51: *          The scalar factors of the elementary reflectors.
   52: *
   53: *  INFO    (output) INTEGER
   54: *          = 0:  successful exit
   55: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   56: *
   57: *  Further Details
   58: *  ===============
   59: *
   60: *  The factorization is obtained by Householder's method.  The kth
   61: *  transformation matrix, Z( k ), which is used to introduce zeros into
   62: *  the ( m - k + 1 )th row of A, is given in the form
   63: *
   64: *     Z( k ) = ( I     0   ),
   65: *              ( 0  T( k ) )
   66: *
   67: *  where
   68: *
   69: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
   70: *                                                 (   0    )
   71: *                                                 ( z( k ) )
   72: *
   73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
   74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
   75: *  of X.
   76: *
   77: *  The scalar tau is returned in the kth element of TAU and the vector
   78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
   79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
   80: *  the upper triangular part of A.
   81: *
   82: *  Z is given by
   83: *
   84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
   85: *
   86: *  =====================================================================
   87: *
   88: *     .. Parameters ..
   89:       DOUBLE PRECISION   ONE, ZERO
   90:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
   91: *     ..
   92: *     .. Local Scalars ..
   93:       INTEGER            I, K, M1
   94: *     ..
   95: *     .. Intrinsic Functions ..
   96:       INTRINSIC          MAX, MIN
   97: *     ..
   98: *     .. External Subroutines ..
   99:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGER, DLARFG, XERBLA
  100: *     ..
  101: *     .. Executable Statements ..
  102: *
  103: *     Test the input parameters.
  104: *
  105:       INFO = 0
  106:       IF( M.LT.0 ) THEN
  107:          INFO = -1
  108:       ELSE IF( N.LT.M ) THEN
  109:          INFO = -2
  110:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  111:          INFO = -4
  112:       END IF
  113:       IF( INFO.NE.0 ) THEN
  114:          CALL XERBLA( 'DTZRQF', -INFO )
  115:          RETURN
  116:       END IF
  117: *
  118: *     Perform the factorization.
  119: *
  120:       IF( M.EQ.0 )
  121:      $   RETURN
  122:       IF( M.EQ.N ) THEN
  123:          DO 10 I = 1, N
  124:             TAU( I ) = ZERO
  125:    10    CONTINUE
  126:       ELSE
  127:          M1 = MIN( M+1, N )
  128:          DO 20 K = M, 1, -1
  129: *
  130: *           Use a Householder reflection to zero the kth row of A.
  131: *           First set up the reflection.
  132: *
  133:             CALL DLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
  134: *
  135:             IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
  136: *
  137: *              We now perform the operation  A := A*P( k ).
  138: *
  139: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
  140: *              where  a( k ) consists of the first ( k - 1 ) elements of
  141: *              the  kth column  of  A.  Also  let  B  denote  the  first
  142: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
  143: *
  144:                CALL DCOPY( K-1, A( 1, K ), 1, TAU, 1 )
  145: *
  146: *              Form   w = a( k ) + B*z( k )  in TAU.
  147: *
  148:                CALL DGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
  149:      $                     LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
  150: *
  151: *              Now form  a( k ) := a( k ) - tau*w
  152: *              and       B      := B      - tau*w*z( k )'.
  153: *
  154:                CALL DAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
  155:                CALL DGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
  156:      $                    A( 1, M1 ), LDA )
  157:             END IF
  158:    20    CONTINUE
  159:       END IF
  160: *
  161:       RETURN
  162: *
  163: *     End of DTZRQF
  164: *
  165:       END

CVSweb interface <joel.bertrand@systella.fr>