Annotation of rpl/lapack/lapack/dtzrqf.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
                      2: *
1.5       bertrand    3: *  -- LAPACK routine (version 3.2.2) --
1.1       bertrand    4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    6: *     June 2010
1.1       bertrand    7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   A( LDA, * ), TAU( * )
                     13: *     ..
                     14: *
                     15: *  Purpose
                     16: *  =======
                     17: *
                     18: *  This routine is deprecated and has been replaced by routine DTZRZF.
                     19: *
                     20: *  DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
                     21: *  to upper triangular form by means of orthogonal transformations.
                     22: *
                     23: *  The upper trapezoidal matrix A is factored as
                     24: *
                     25: *     A = ( R  0 ) * Z,
                     26: *
                     27: *  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
                     28: *  triangular matrix.
                     29: *
                     30: *  Arguments
                     31: *  =========
                     32: *
                     33: *  M       (input) INTEGER
                     34: *          The number of rows of the matrix A.  M >= 0.
                     35: *
                     36: *  N       (input) INTEGER
                     37: *          The number of columns of the matrix A.  N >= M.
                     38: *
                     39: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     40: *          On entry, the leading M-by-N upper trapezoidal part of the
                     41: *          array A must contain the matrix to be factorized.
                     42: *          On exit, the leading M-by-M upper triangular part of A
                     43: *          contains the upper triangular matrix R, and elements M+1 to
                     44: *          N of the first M rows of A, with the array TAU, represent the
                     45: *          orthogonal matrix Z as a product of M elementary reflectors.
                     46: *
                     47: *  LDA     (input) INTEGER
                     48: *          The leading dimension of the array A.  LDA >= max(1,M).
                     49: *
                     50: *  TAU     (output) DOUBLE PRECISION array, dimension (M)
                     51: *          The scalar factors of the elementary reflectors.
                     52: *
                     53: *  INFO    (output) INTEGER
                     54: *          = 0:  successful exit
                     55: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                     56: *
                     57: *  Further Details
                     58: *  ===============
                     59: *
                     60: *  The factorization is obtained by Householder's method.  The kth
                     61: *  transformation matrix, Z( k ), which is used to introduce zeros into
                     62: *  the ( m - k + 1 )th row of A, is given in the form
                     63: *
                     64: *     Z( k ) = ( I     0   ),
                     65: *              ( 0  T( k ) )
                     66: *
                     67: *  where
                     68: *
                     69: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
                     70: *                                                 (   0    )
                     71: *                                                 ( z( k ) )
                     72: *
                     73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
                     74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
                     75: *  of X.
                     76: *
                     77: *  The scalar tau is returned in the kth element of TAU and the vector
                     78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
                     79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                     80: *  the upper triangular part of A.
                     81: *
                     82: *  Z is given by
                     83: *
                     84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                     85: *
                     86: *  =====================================================================
                     87: *
                     88: *     .. Parameters ..
                     89:       DOUBLE PRECISION   ONE, ZERO
                     90:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                     91: *     ..
                     92: *     .. Local Scalars ..
                     93:       INTEGER            I, K, M1
                     94: *     ..
                     95: *     .. Intrinsic Functions ..
                     96:       INTRINSIC          MAX, MIN
                     97: *     ..
                     98: *     .. External Subroutines ..
1.5       bertrand   99:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGER, DLARFG, XERBLA
1.1       bertrand  100: *     ..
                    101: *     .. Executable Statements ..
                    102: *
                    103: *     Test the input parameters.
                    104: *
                    105:       INFO = 0
                    106:       IF( M.LT.0 ) THEN
                    107:          INFO = -1
                    108:       ELSE IF( N.LT.M ) THEN
                    109:          INFO = -2
                    110:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    111:          INFO = -4
                    112:       END IF
                    113:       IF( INFO.NE.0 ) THEN
                    114:          CALL XERBLA( 'DTZRQF', -INFO )
                    115:          RETURN
                    116:       END IF
                    117: *
                    118: *     Perform the factorization.
                    119: *
                    120:       IF( M.EQ.0 )
                    121:      $   RETURN
                    122:       IF( M.EQ.N ) THEN
                    123:          DO 10 I = 1, N
                    124:             TAU( I ) = ZERO
                    125:    10    CONTINUE
                    126:       ELSE
                    127:          M1 = MIN( M+1, N )
                    128:          DO 20 K = M, 1, -1
                    129: *
                    130: *           Use a Householder reflection to zero the kth row of A.
                    131: *           First set up the reflection.
                    132: *
1.5       bertrand  133:             CALL DLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  134: *
                    135:             IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
                    136: *
                    137: *              We now perform the operation  A := A*P( k ).
                    138: *
                    139: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    140: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    141: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    142: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    143: *
                    144:                CALL DCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    145: *
                    146: *              Form   w = a( k ) + B*z( k )  in TAU.
                    147: *
                    148:                CALL DGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
                    149:      $                     LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
                    150: *
                    151: *              Now form  a( k ) := a( k ) - tau*w
                    152: *              and       B      := B      - tau*w*z( k )'.
                    153: *
                    154:                CALL DAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
                    155:                CALL DGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
                    156:      $                    A( 1, M1 ), LDA )
                    157:             END IF
                    158:    20    CONTINUE
                    159:       END IF
                    160: *
                    161:       RETURN
                    162: *
                    163: *     End of DTZRQF
                    164: *
                    165:       END

CVSweb interface <joel.bertrand@systella.fr>