Annotation of rpl/lapack/lapack/dtzrqf.f, revision 1.13

1.10      bertrand    1: *> \brief \b DTZRQF
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DTZRQF + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtzrqf.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtzrqf.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtzrqf.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER            INFO, LDA, M, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), TAU( * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> This routine is deprecated and has been replaced by routine DTZRZF.
                     37: *>
                     38: *> DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
                     39: *> to upper triangular form by means of orthogonal transformations.
                     40: *>
                     41: *> The upper trapezoidal matrix A is factored as
                     42: *>
                     43: *>    A = ( R  0 ) * Z,
                     44: *>
                     45: *> where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
                     46: *> triangular matrix.
                     47: *> \endverbatim
                     48: *
                     49: *  Arguments:
                     50: *  ==========
                     51: *
                     52: *> \param[in] M
                     53: *> \verbatim
                     54: *>          M is INTEGER
                     55: *>          The number of rows of the matrix A.  M >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in] N
                     59: *> \verbatim
                     60: *>          N is INTEGER
                     61: *>          The number of columns of the matrix A.  N >= M.
                     62: *> \endverbatim
                     63: *>
                     64: *> \param[in,out] A
                     65: *> \verbatim
                     66: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     67: *>          On entry, the leading M-by-N upper trapezoidal part of the
                     68: *>          array A must contain the matrix to be factorized.
                     69: *>          On exit, the leading M-by-M upper triangular part of A
                     70: *>          contains the upper triangular matrix R, and elements M+1 to
                     71: *>          N of the first M rows of A, with the array TAU, represent the
                     72: *>          orthogonal matrix Z as a product of M elementary reflectors.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] LDA
                     76: *> \verbatim
                     77: *>          LDA is INTEGER
                     78: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[out] TAU
                     82: *> \verbatim
                     83: *>          TAU is DOUBLE PRECISION array, dimension (M)
                     84: *>          The scalar factors of the elementary reflectors.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] INFO
                     88: *> \verbatim
                     89: *>          INFO is INTEGER
                     90: *>          = 0:  successful exit
                     91: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                     92: *> \endverbatim
                     93: *
                     94: *  Authors:
                     95: *  ========
                     96: *
                     97: *> \author Univ. of Tennessee 
                     98: *> \author Univ. of California Berkeley 
                     99: *> \author Univ. of Colorado Denver 
                    100: *> \author NAG Ltd. 
                    101: *
                    102: *> \date November 2011
                    103: *
                    104: *> \ingroup doubleOTHERcomputational
                    105: *
                    106: *> \par Further Details:
                    107: *  =====================
                    108: *>
                    109: *> \verbatim
                    110: *>
                    111: *>  The factorization is obtained by Householder's method.  The kth
                    112: *>  transformation matrix, Z( k ), which is used to introduce zeros into
                    113: *>  the ( m - k + 1 )th row of A, is given in the form
                    114: *>
                    115: *>     Z( k ) = ( I     0   ),
                    116: *>              ( 0  T( k ) )
                    117: *>
                    118: *>  where
                    119: *>
                    120: *>     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
                    121: *>                                                   (   0    )
                    122: *>                                                   ( z( k ) )
                    123: *>
                    124: *>  tau is a scalar and z( k ) is an ( n - m ) element vector.
                    125: *>  tau and z( k ) are chosen to annihilate the elements of the kth row
                    126: *>  of X.
                    127: *>
                    128: *>  The scalar tau is returned in the kth element of TAU and the vector
                    129: *>  u( k ) in the kth row of A, such that the elements of z( k ) are
                    130: *>  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
                    131: *>  the upper triangular part of A.
                    132: *>
                    133: *>  Z is given by
                    134: *>
                    135: *>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
                    136: *> \endverbatim
                    137: *>
                    138: *  =====================================================================
1.1       bertrand  139:       SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
                    140: *
1.10      bertrand  141: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  142: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    143: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  144: *     November 2011
1.1       bertrand  145: *
                    146: *     .. Scalar Arguments ..
                    147:       INTEGER            INFO, LDA, M, N
                    148: *     ..
                    149: *     .. Array Arguments ..
                    150:       DOUBLE PRECISION   A( LDA, * ), TAU( * )
                    151: *     ..
                    152: *
                    153: *  =====================================================================
                    154: *
                    155: *     .. Parameters ..
                    156:       DOUBLE PRECISION   ONE, ZERO
                    157:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                    158: *     ..
                    159: *     .. Local Scalars ..
                    160:       INTEGER            I, K, M1
                    161: *     ..
                    162: *     .. Intrinsic Functions ..
                    163:       INTRINSIC          MAX, MIN
                    164: *     ..
                    165: *     .. External Subroutines ..
1.5       bertrand  166:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGER, DLARFG, XERBLA
1.1       bertrand  167: *     ..
                    168: *     .. Executable Statements ..
                    169: *
                    170: *     Test the input parameters.
                    171: *
                    172:       INFO = 0
                    173:       IF( M.LT.0 ) THEN
                    174:          INFO = -1
                    175:       ELSE IF( N.LT.M ) THEN
                    176:          INFO = -2
                    177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    178:          INFO = -4
                    179:       END IF
                    180:       IF( INFO.NE.0 ) THEN
                    181:          CALL XERBLA( 'DTZRQF', -INFO )
                    182:          RETURN
                    183:       END IF
                    184: *
                    185: *     Perform the factorization.
                    186: *
                    187:       IF( M.EQ.0 )
                    188:      $   RETURN
                    189:       IF( M.EQ.N ) THEN
                    190:          DO 10 I = 1, N
                    191:             TAU( I ) = ZERO
                    192:    10    CONTINUE
                    193:       ELSE
                    194:          M1 = MIN( M+1, N )
                    195:          DO 20 K = M, 1, -1
                    196: *
                    197: *           Use a Householder reflection to zero the kth row of A.
                    198: *           First set up the reflection.
                    199: *
1.5       bertrand  200:             CALL DLARFG( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
1.1       bertrand  201: *
                    202:             IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
                    203: *
                    204: *              We now perform the operation  A := A*P( k ).
                    205: *
                    206: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
                    207: *              where  a( k ) consists of the first ( k - 1 ) elements of
                    208: *              the  kth column  of  A.  Also  let  B  denote  the  first
                    209: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
                    210: *
                    211:                CALL DCOPY( K-1, A( 1, K ), 1, TAU, 1 )
                    212: *
                    213: *              Form   w = a( k ) + B*z( k )  in TAU.
                    214: *
                    215:                CALL DGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
                    216:      $                     LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
                    217: *
                    218: *              Now form  a( k ) := a( k ) - tau*w
1.9       bertrand  219: *              and       B      := B      - tau*w*z( k )**T.
1.1       bertrand  220: *
                    221:                CALL DAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
                    222:                CALL DGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
                    223:      $                    A( 1, M1 ), LDA )
                    224:             END IF
                    225:    20    CONTINUE
                    226:       END IF
                    227: *
                    228:       RETURN
                    229: *
                    230: *     End of DTZRQF
                    231: *
                    232:       END

CVSweb interface <joel.bertrand@systella.fr>