Annotation of rpl/lapack/lapack/dtzrqf.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DTZRQF( M, N, A, LDA, TAU, INFO )
        !             2: *
        !             3: *  -- LAPACK routine (version 3.2) --
        !             4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             6: *     November 2006
        !             7: *
        !             8: *     .. Scalar Arguments ..
        !             9:       INTEGER            INFO, LDA, M, N
        !            10: *     ..
        !            11: *     .. Array Arguments ..
        !            12:       DOUBLE PRECISION   A( LDA, * ), TAU( * )
        !            13: *     ..
        !            14: *
        !            15: *  Purpose
        !            16: *  =======
        !            17: *
        !            18: *  This routine is deprecated and has been replaced by routine DTZRZF.
        !            19: *
        !            20: *  DTZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
        !            21: *  to upper triangular form by means of orthogonal transformations.
        !            22: *
        !            23: *  The upper trapezoidal matrix A is factored as
        !            24: *
        !            25: *     A = ( R  0 ) * Z,
        !            26: *
        !            27: *  where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
        !            28: *  triangular matrix.
        !            29: *
        !            30: *  Arguments
        !            31: *  =========
        !            32: *
        !            33: *  M       (input) INTEGER
        !            34: *          The number of rows of the matrix A.  M >= 0.
        !            35: *
        !            36: *  N       (input) INTEGER
        !            37: *          The number of columns of the matrix A.  N >= M.
        !            38: *
        !            39: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            40: *          On entry, the leading M-by-N upper trapezoidal part of the
        !            41: *          array A must contain the matrix to be factorized.
        !            42: *          On exit, the leading M-by-M upper triangular part of A
        !            43: *          contains the upper triangular matrix R, and elements M+1 to
        !            44: *          N of the first M rows of A, with the array TAU, represent the
        !            45: *          orthogonal matrix Z as a product of M elementary reflectors.
        !            46: *
        !            47: *  LDA     (input) INTEGER
        !            48: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            49: *
        !            50: *  TAU     (output) DOUBLE PRECISION array, dimension (M)
        !            51: *          The scalar factors of the elementary reflectors.
        !            52: *
        !            53: *  INFO    (output) INTEGER
        !            54: *          = 0:  successful exit
        !            55: *          < 0:  if INFO = -i, the i-th argument had an illegal value
        !            56: *
        !            57: *  Further Details
        !            58: *  ===============
        !            59: *
        !            60: *  The factorization is obtained by Householder's method.  The kth
        !            61: *  transformation matrix, Z( k ), which is used to introduce zeros into
        !            62: *  the ( m - k + 1 )th row of A, is given in the form
        !            63: *
        !            64: *     Z( k ) = ( I     0   ),
        !            65: *              ( 0  T( k ) )
        !            66: *
        !            67: *  where
        !            68: *
        !            69: *     T( k ) = I - tau*u( k )*u( k )',   u( k ) = (   1    ),
        !            70: *                                                 (   0    )
        !            71: *                                                 ( z( k ) )
        !            72: *
        !            73: *  tau is a scalar and z( k ) is an ( n - m ) element vector.
        !            74: *  tau and z( k ) are chosen to annihilate the elements of the kth row
        !            75: *  of X.
        !            76: *
        !            77: *  The scalar tau is returned in the kth element of TAU and the vector
        !            78: *  u( k ) in the kth row of A, such that the elements of z( k ) are
        !            79: *  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
        !            80: *  the upper triangular part of A.
        !            81: *
        !            82: *  Z is given by
        !            83: *
        !            84: *     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
        !            85: *
        !            86: *  =====================================================================
        !            87: *
        !            88: *     .. Parameters ..
        !            89:       DOUBLE PRECISION   ONE, ZERO
        !            90:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
        !            91: *     ..
        !            92: *     .. Local Scalars ..
        !            93:       INTEGER            I, K, M1
        !            94: *     ..
        !            95: *     .. Intrinsic Functions ..
        !            96:       INTRINSIC          MAX, MIN
        !            97: *     ..
        !            98: *     .. External Subroutines ..
        !            99:       EXTERNAL           DAXPY, DCOPY, DGEMV, DGER, DLARFP, XERBLA
        !           100: *     ..
        !           101: *     .. Executable Statements ..
        !           102: *
        !           103: *     Test the input parameters.
        !           104: *
        !           105:       INFO = 0
        !           106:       IF( M.LT.0 ) THEN
        !           107:          INFO = -1
        !           108:       ELSE IF( N.LT.M ) THEN
        !           109:          INFO = -2
        !           110:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           111:          INFO = -4
        !           112:       END IF
        !           113:       IF( INFO.NE.0 ) THEN
        !           114:          CALL XERBLA( 'DTZRQF', -INFO )
        !           115:          RETURN
        !           116:       END IF
        !           117: *
        !           118: *     Perform the factorization.
        !           119: *
        !           120:       IF( M.EQ.0 )
        !           121:      $   RETURN
        !           122:       IF( M.EQ.N ) THEN
        !           123:          DO 10 I = 1, N
        !           124:             TAU( I ) = ZERO
        !           125:    10    CONTINUE
        !           126:       ELSE
        !           127:          M1 = MIN( M+1, N )
        !           128:          DO 20 K = M, 1, -1
        !           129: *
        !           130: *           Use a Householder reflection to zero the kth row of A.
        !           131: *           First set up the reflection.
        !           132: *
        !           133:             CALL DLARFP( N-M+1, A( K, K ), A( K, M1 ), LDA, TAU( K ) )
        !           134: *
        !           135:             IF( ( TAU( K ).NE.ZERO ) .AND. ( K.GT.1 ) ) THEN
        !           136: *
        !           137: *              We now perform the operation  A := A*P( k ).
        !           138: *
        !           139: *              Use the first ( k - 1 ) elements of TAU to store  a( k ),
        !           140: *              where  a( k ) consists of the first ( k - 1 ) elements of
        !           141: *              the  kth column  of  A.  Also  let  B  denote  the  first
        !           142: *              ( k - 1 ) rows of the last ( n - m ) columns of A.
        !           143: *
        !           144:                CALL DCOPY( K-1, A( 1, K ), 1, TAU, 1 )
        !           145: *
        !           146: *              Form   w = a( k ) + B*z( k )  in TAU.
        !           147: *
        !           148:                CALL DGEMV( 'No transpose', K-1, N-M, ONE, A( 1, M1 ),
        !           149:      $                     LDA, A( K, M1 ), LDA, ONE, TAU, 1 )
        !           150: *
        !           151: *              Now form  a( k ) := a( k ) - tau*w
        !           152: *              and       B      := B      - tau*w*z( k )'.
        !           153: *
        !           154:                CALL DAXPY( K-1, -TAU( K ), TAU, 1, A( 1, K ), 1 )
        !           155:                CALL DGER( K-1, N-M, -TAU( K ), TAU, 1, A( K, M1 ), LDA,
        !           156:      $                    A( 1, M1 ), LDA )
        !           157:             END IF
        !           158:    20    CONTINUE
        !           159:       END IF
        !           160: *
        !           161:       RETURN
        !           162: *
        !           163: *     End of DTZRQF
        !           164: *
        !           165:       END

CVSweb interface <joel.bertrand@systella.fr>