File:  [local] / rpl / lapack / lapack / dtrttf.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:04:00 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
    2: *
    3: *  -- LAPACK routine (version 3.2.2)                                    --
    4: *
    5: *  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
    6: *  -- June 2010                                                       --
    7: *
    8: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    9: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          TRANSR, UPLO
   13:       INTEGER            INFO, N, LDA
   14: *     ..
   15: *     .. Array Arguments ..
   16:       DOUBLE PRECISION   A( 0: LDA-1, 0: * ), ARF( 0: * )
   17: *     ..
   18: *
   19: *  Purpose
   20: *  =======
   21: *
   22: *  DTRTTF copies a triangular matrix A from standard full format (TR)
   23: *  to rectangular full packed format (TF) .
   24: *
   25: *  Arguments
   26: *  =========
   27: *
   28: *  TRANSR  (input) CHARACTER
   29: *          = 'N':  ARF in Normal form is wanted;
   30: *          = 'T':  ARF in Transpose form is wanted.
   31: *
   32: *  UPLO    (input) CHARACTER
   33: *          = 'U':  Upper triangle of A is stored;
   34: *          = 'L':  Lower triangle of A is stored.
   35: *
   36: *  N       (input) INTEGER
   37: *          The order of the matrix A. N >= 0.
   38: *
   39: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N).
   40: *          On entry, the triangular matrix A.  If UPLO = 'U', the
   41: *          leading N-by-N upper triangular part of the array A contains
   42: *          the upper triangular matrix, and the strictly lower
   43: *          triangular part of A is not referenced.  If UPLO = 'L', the
   44: *          leading N-by-N lower triangular part of the array A contains
   45: *          the lower triangular matrix, and the strictly upper
   46: *          triangular part of A is not referenced.
   47: *
   48: *  LDA     (input) INTEGER
   49: *          The leading dimension of the matrix A. LDA >= max(1,N).
   50: *
   51: *  ARF     (output) DOUBLE PRECISION array, dimension (NT).
   52: *          NT=N*(N+1)/2. On exit, the triangular matrix A in RFP format.
   53: *
   54: *  INFO    (output) INTEGER
   55: *          = 0:  successful exit
   56: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   57: *
   58: *  Further Details
   59: *  ===============
   60: *
   61: *  We first consider Rectangular Full Packed (RFP) Format when N is
   62: *  even. We give an example where N = 6.
   63: *
   64: *      AP is Upper             AP is Lower
   65: *
   66: *   00 01 02 03 04 05       00
   67: *      11 12 13 14 15       10 11
   68: *         22 23 24 25       20 21 22
   69: *            33 34 35       30 31 32 33
   70: *               44 45       40 41 42 43 44
   71: *                  55       50 51 52 53 54 55
   72: *
   73: *
   74: *  Let TRANSR = 'N'. RFP holds AP as follows:
   75: *  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
   76: *  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
   77: *  the transpose of the first three columns of AP upper.
   78: *  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
   79: *  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
   80: *  the transpose of the last three columns of AP lower.
   81: *  This covers the case N even and TRANSR = 'N'.
   82: *
   83: *         RFP A                   RFP A
   84: *
   85: *        03 04 05                33 43 53
   86: *        13 14 15                00 44 54
   87: *        23 24 25                10 11 55
   88: *        33 34 35                20 21 22
   89: *        00 44 45                30 31 32
   90: *        01 11 55                40 41 42
   91: *        02 12 22                50 51 52
   92: *
   93: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
   94: *  transpose of RFP A above. One therefore gets:
   95: *
   96: *
   97: *           RFP A                   RFP A
   98: *
   99: *     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  100: *     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  101: *     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  102: *
  103: *
  104: *  We then consider Rectangular Full Packed (RFP) Format when N is
  105: *  odd. We give an example where N = 5.
  106: *
  107: *     AP is Upper                 AP is Lower
  108: *
  109: *   00 01 02 03 04              00
  110: *      11 12 13 14              10 11
  111: *         22 23 24              20 21 22
  112: *            33 34              30 31 32 33
  113: *               44              40 41 42 43 44
  114: *
  115: *
  116: *  Let TRANSR = 'N'. RFP holds AP as follows:
  117: *  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  118: *  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  119: *  the transpose of the first two columns of AP upper.
  120: *  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  121: *  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  122: *  the transpose of the last two columns of AP lower.
  123: *  This covers the case N odd and TRANSR = 'N'.
  124: *
  125: *         RFP A                   RFP A
  126: *
  127: *        02 03 04                00 33 43
  128: *        12 13 14                10 11 44
  129: *        22 23 24                20 21 22
  130: *        00 33 34                30 31 32
  131: *        01 11 44                40 41 42
  132: *
  133: *  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  134: *  transpose of RFP A above. One therefore gets:
  135: *
  136: *           RFP A                   RFP A
  137: *
  138: *     02 12 22 00 01             00 10 20 30 40 50
  139: *     03 13 23 33 11             33 11 21 31 41 51
  140: *     04 14 24 34 44             43 44 22 32 42 52
  141: *
  142: *  Reference
  143: *  =========
  144: *
  145: *  =====================================================================
  146: *
  147: *     ..
  148: *     .. Local Scalars ..
  149:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  150:       INTEGER            I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
  151: *     ..
  152: *     .. External Functions ..
  153:       LOGICAL            LSAME
  154:       EXTERNAL           LSAME
  155: *     ..
  156: *     .. External Subroutines ..
  157:       EXTERNAL           XERBLA
  158: *     ..
  159: *     .. Intrinsic Functions ..
  160:       INTRINSIC          MAX, MOD
  161: *     ..
  162: *     .. Executable Statements ..
  163: *
  164: *     Test the input parameters.
  165: *
  166:       INFO = 0
  167:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  168:       LOWER = LSAME( UPLO, 'L' )
  169:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  170:          INFO = -1
  171:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  172:          INFO = -2
  173:       ELSE IF( N.LT.0 ) THEN
  174:          INFO = -3
  175:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  176:          INFO = -5
  177:       END IF
  178:       IF( INFO.NE.0 ) THEN
  179:          CALL XERBLA( 'DTRTTF', -INFO )
  180:          RETURN
  181:       END IF
  182: *
  183: *     Quick return if possible
  184: *
  185:       IF( N.LE.1 ) THEN
  186:          IF( N.EQ.1 ) THEN
  187:             ARF( 0 ) = A( 0, 0 )
  188:          END IF
  189:          RETURN
  190:       END IF
  191: *
  192: *     Size of array ARF(0:nt-1)
  193: *
  194:       NT = N*( N+1 ) / 2
  195: *
  196: *     Set N1 and N2 depending on LOWER: for N even N1=N2=K
  197: *
  198:       IF( LOWER ) THEN
  199:          N2 = N / 2
  200:          N1 = N - N2
  201:       ELSE
  202:          N1 = N / 2
  203:          N2 = N - N1
  204:       END IF
  205: *
  206: *     If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  207: *     If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  208: *     N--by--(N+1)/2.
  209: *
  210:       IF( MOD( N, 2 ).EQ.0 ) THEN
  211:          K = N / 2
  212:          NISODD = .FALSE.
  213:          IF( .NOT.LOWER )
  214:      +      NP1X2 = N + N + 2
  215:       ELSE
  216:          NISODD = .TRUE.
  217:          IF( .NOT.LOWER )
  218:      +      NX2 = N + N
  219:       END IF
  220: *
  221:       IF( NISODD ) THEN
  222: *
  223: *        N is odd
  224: *
  225:          IF( NORMALTRANSR ) THEN
  226: *
  227: *           N is odd and TRANSR = 'N'
  228: *
  229:             IF( LOWER ) THEN
  230: *
  231: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  232: *
  233:                IJ = 0
  234:                DO J = 0, N2
  235:                   DO I = N1, N2 + J
  236:                      ARF( IJ ) = A( N2+J, I )
  237:                      IJ = IJ + 1
  238:                   END DO
  239:                   DO I = J, N - 1
  240:                      ARF( IJ ) = A( I, J )
  241:                      IJ = IJ + 1
  242:                   END DO
  243:                END DO
  244: *
  245:             ELSE
  246: *
  247: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  248: *
  249:                IJ = NT - N
  250:                DO J = N - 1, N1, -1
  251:                   DO I = 0, J
  252:                      ARF( IJ ) = A( I, J )
  253:                      IJ = IJ + 1
  254:                   END DO
  255:                   DO L = J - N1, N1 - 1
  256:                      ARF( IJ ) = A( J-N1, L )
  257:                      IJ = IJ + 1
  258:                   END DO
  259:                   IJ = IJ - NX2
  260:                END DO
  261: *
  262:             END IF
  263: *
  264:          ELSE
  265: *
  266: *           N is odd and TRANSR = 'T'
  267: *
  268:             IF( LOWER ) THEN
  269: *
  270: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  271: *
  272:                IJ = 0
  273:                DO J = 0, N2 - 1
  274:                   DO I = 0, J
  275:                      ARF( IJ ) = A( J, I )
  276:                      IJ = IJ + 1
  277:                   END DO
  278:                   DO I = N1 + J, N - 1
  279:                      ARF( IJ ) = A( I, N1+J )
  280:                      IJ = IJ + 1
  281:                   END DO
  282:                END DO
  283:                DO J = N2, N - 1
  284:                   DO I = 0, N1 - 1
  285:                      ARF( IJ ) = A( J, I )
  286:                      IJ = IJ + 1
  287:                   END DO
  288:                END DO
  289: *
  290:             ELSE
  291: *
  292: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  293: *
  294:                IJ = 0
  295:                DO J = 0, N1
  296:                   DO I = N1, N - 1
  297:                      ARF( IJ ) = A( J, I )
  298:                      IJ = IJ + 1
  299:                   END DO
  300:                END DO
  301:                DO J = 0, N1 - 1
  302:                   DO I = 0, J
  303:                      ARF( IJ ) = A( I, J )
  304:                      IJ = IJ + 1
  305:                   END DO
  306:                   DO L = N2 + J, N - 1
  307:                      ARF( IJ ) = A( N2+J, L )
  308:                      IJ = IJ + 1
  309:                   END DO
  310:                END DO
  311: *
  312:             END IF
  313: *
  314:          END IF
  315: *
  316:       ELSE
  317: *
  318: *        N is even
  319: *
  320:          IF( NORMALTRANSR ) THEN
  321: *
  322: *           N is even and TRANSR = 'N'
  323: *
  324:             IF( LOWER ) THEN
  325: *
  326: *              N is even, TRANSR = 'N', and UPLO = 'L'
  327: *
  328:                IJ = 0
  329:                DO J = 0, K - 1
  330:                   DO I = K, K + J
  331:                      ARF( IJ ) = A( K+J, I )
  332:                      IJ = IJ + 1
  333:                   END DO
  334:                   DO I = J, N - 1
  335:                      ARF( IJ ) = A( I, J )
  336:                      IJ = IJ + 1
  337:                   END DO
  338:                END DO
  339: *
  340:             ELSE
  341: *
  342: *              N is even, TRANSR = 'N', and UPLO = 'U'
  343: *
  344:                IJ = NT - N - 1
  345:                DO J = N - 1, K, -1
  346:                   DO I = 0, J
  347:                      ARF( IJ ) = A( I, J )
  348:                      IJ = IJ + 1
  349:                   END DO
  350:                   DO L = J - K, K - 1
  351:                      ARF( IJ ) = A( J-K, L )
  352:                      IJ = IJ + 1
  353:                   END DO
  354:                   IJ = IJ - NP1X2
  355:                END DO
  356: *
  357:             END IF
  358: *
  359:          ELSE
  360: *
  361: *           N is even and TRANSR = 'T'
  362: *
  363:             IF( LOWER ) THEN
  364: *
  365: *              N is even, TRANSR = 'T', and UPLO = 'L'
  366: *
  367:                IJ = 0
  368:                J = K
  369:                DO I = K, N - 1
  370:                   ARF( IJ ) = A( I, J )
  371:                   IJ = IJ + 1
  372:                END DO
  373:                DO J = 0, K - 2
  374:                   DO I = 0, J
  375:                      ARF( IJ ) = A( J, I )
  376:                      IJ = IJ + 1
  377:                   END DO
  378:                   DO I = K + 1 + J, N - 1
  379:                      ARF( IJ ) = A( I, K+1+J )
  380:                      IJ = IJ + 1
  381:                   END DO
  382:                END DO
  383:                DO J = K - 1, N - 1
  384:                   DO I = 0, K - 1
  385:                      ARF( IJ ) = A( J, I )
  386:                      IJ = IJ + 1
  387:                   END DO
  388:                END DO
  389: *
  390:             ELSE
  391: *
  392: *              N is even, TRANSR = 'T', and UPLO = 'U'
  393: *
  394:                IJ = 0
  395:                DO J = 0, K
  396:                   DO I = K, N - 1
  397:                      ARF( IJ ) = A( J, I )
  398:                      IJ = IJ + 1
  399:                   END DO
  400:                END DO
  401:                DO J = 0, K - 2
  402:                   DO I = 0, J
  403:                      ARF( IJ ) = A( I, J )
  404:                      IJ = IJ + 1
  405:                   END DO
  406:                   DO L = K + 1 + J, N - 1
  407:                      ARF( IJ ) = A( K+1+J, L )
  408:                      IJ = IJ + 1
  409:                   END DO
  410:                END DO
  411: *              Note that here, on exit of the loop, J = K-1
  412:                DO I = 0, J
  413:                   ARF( IJ ) = A( I, J )
  414:                   IJ = IJ + 1
  415:                END DO
  416: *
  417:             END IF
  418: *
  419:          END IF
  420: *
  421:       END IF
  422: *
  423:       RETURN
  424: *
  425: *     End of DTRTTF
  426: *
  427:       END

CVSweb interface <joel.bertrand@systella.fr>