File:  [local] / rpl / lapack / lapack / dtrsna.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:13 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTRSNA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTRSNA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsna.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsna.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsna.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
   22: *                          LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          HOWMNY, JOB
   27: *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
   33: *      $                   VR( LDVR, * ), WORK( LDWORK, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DTRSNA estimates reciprocal condition numbers for specified
   43: *> eigenvalues and/or right eigenvectors of a real upper
   44: *> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
   45: *> orthogonal).
   46: *>
   47: *> T must be in Schur canonical form (as returned by DHSEQR), that is,
   48: *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
   49: *> 2-by-2 diagonal block has its diagonal elements equal and its
   50: *> off-diagonal elements of opposite sign.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOB
   57: *> \verbatim
   58: *>          JOB is CHARACTER*1
   59: *>          Specifies whether condition numbers are required for
   60: *>          eigenvalues (S) or eigenvectors (SEP):
   61: *>          = 'E': for eigenvalues only (S);
   62: *>          = 'V': for eigenvectors only (SEP);
   63: *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
   64: *> \endverbatim
   65: *>
   66: *> \param[in] HOWMNY
   67: *> \verbatim
   68: *>          HOWMNY is CHARACTER*1
   69: *>          = 'A': compute condition numbers for all eigenpairs;
   70: *>          = 'S': compute condition numbers for selected eigenpairs
   71: *>                 specified by the array SELECT.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] SELECT
   75: *> \verbatim
   76: *>          SELECT is LOGICAL array, dimension (N)
   77: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   78: *>          condition numbers are required. To select condition numbers
   79: *>          for the eigenpair corresponding to a real eigenvalue w(j),
   80: *>          SELECT(j) must be set to .TRUE.. To select condition numbers
   81: *>          corresponding to a complex conjugate pair of eigenvalues w(j)
   82: *>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
   83: *>          set to .TRUE..
   84: *>          If HOWMNY = 'A', SELECT is not referenced.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] N
   88: *> \verbatim
   89: *>          N is INTEGER
   90: *>          The order of the matrix T. N >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] T
   94: *> \verbatim
   95: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
   96: *>          The upper quasi-triangular matrix T, in Schur canonical form.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDT
  100: *> \verbatim
  101: *>          LDT is INTEGER
  102: *>          The leading dimension of the array T. LDT >= max(1,N).
  103: *> \endverbatim
  104: *>
  105: *> \param[in] VL
  106: *> \verbatim
  107: *>          VL is DOUBLE PRECISION array, dimension (LDVL,M)
  108: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
  109: *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
  110: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  111: *>          must be stored in consecutive columns of VL, as returned by
  112: *>          DHSEIN or DTREVC.
  113: *>          If JOB = 'V', VL is not referenced.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDVL
  117: *> \verbatim
  118: *>          LDVL is INTEGER
  119: *>          The leading dimension of the array VL.
  120: *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] VR
  124: *> \verbatim
  125: *>          VR is DOUBLE PRECISION array, dimension (LDVR,M)
  126: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
  127: *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
  128: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  129: *>          must be stored in consecutive columns of VR, as returned by
  130: *>          DHSEIN or DTREVC.
  131: *>          If JOB = 'V', VR is not referenced.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDVR
  135: *> \verbatim
  136: *>          LDVR is INTEGER
  137: *>          The leading dimension of the array VR.
  138: *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] S
  142: *> \verbatim
  143: *>          S is DOUBLE PRECISION array, dimension (MM)
  144: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
  145: *>          selected eigenvalues, stored in consecutive elements of the
  146: *>          array. For a complex conjugate pair of eigenvalues two
  147: *>          consecutive elements of S are set to the same value. Thus
  148: *>          S(j), SEP(j), and the j-th columns of VL and VR all
  149: *>          correspond to the same eigenpair (but not in general the
  150: *>          j-th eigenpair, unless all eigenpairs are selected).
  151: *>          If JOB = 'V', S is not referenced.
  152: *> \endverbatim
  153: *>
  154: *> \param[out] SEP
  155: *> \verbatim
  156: *>          SEP is DOUBLE PRECISION array, dimension (MM)
  157: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
  158: *>          numbers of the selected eigenvectors, stored in consecutive
  159: *>          elements of the array. For a complex eigenvector two
  160: *>          consecutive elements of SEP are set to the same value. If
  161: *>          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
  162: *>          is set to 0; this can only occur when the true value would be
  163: *>          very small anyway.
  164: *>          If JOB = 'E', SEP is not referenced.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] MM
  168: *> \verbatim
  169: *>          MM is INTEGER
  170: *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
  171: *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] M
  175: *> \verbatim
  176: *>          M is INTEGER
  177: *>          The number of elements of the arrays S and/or SEP actually
  178: *>          used to store the estimated condition numbers.
  179: *>          If HOWMNY = 'A', M is set to N.
  180: *> \endverbatim
  181: *>
  182: *> \param[out] WORK
  183: *> \verbatim
  184: *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6)
  185: *>          If JOB = 'E', WORK is not referenced.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LDWORK
  189: *> \verbatim
  190: *>          LDWORK is INTEGER
  191: *>          The leading dimension of the array WORK.
  192: *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] IWORK
  196: *> \verbatim
  197: *>          IWORK is INTEGER array, dimension (2*(N-1))
  198: *>          If JOB = 'E', IWORK is not referenced.
  199: *> \endverbatim
  200: *>
  201: *> \param[out] INFO
  202: *> \verbatim
  203: *>          INFO is INTEGER
  204: *>          = 0: successful exit
  205: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  206: *> \endverbatim
  207: *
  208: *  Authors:
  209: *  ========
  210: *
  211: *> \author Univ. of Tennessee
  212: *> \author Univ. of California Berkeley
  213: *> \author Univ. of Colorado Denver
  214: *> \author NAG Ltd.
  215: *
  216: *> \ingroup doubleOTHERcomputational
  217: *
  218: *> \par Further Details:
  219: *  =====================
  220: *>
  221: *> \verbatim
  222: *>
  223: *>  The reciprocal of the condition number of an eigenvalue lambda is
  224: *>  defined as
  225: *>
  226: *>          S(lambda) = |v**T*u| / (norm(u)*norm(v))
  227: *>
  228: *>  where u and v are the right and left eigenvectors of T corresponding
  229: *>  to lambda; v**T denotes the transpose of v, and norm(u)
  230: *>  denotes the Euclidean norm. These reciprocal condition numbers always
  231: *>  lie between zero (very badly conditioned) and one (very well
  232: *>  conditioned). If n = 1, S(lambda) is defined to be 1.
  233: *>
  234: *>  An approximate error bound for a computed eigenvalue W(i) is given by
  235: *>
  236: *>                      EPS * norm(T) / S(i)
  237: *>
  238: *>  where EPS is the machine precision.
  239: *>
  240: *>  The reciprocal of the condition number of the right eigenvector u
  241: *>  corresponding to lambda is defined as follows. Suppose
  242: *>
  243: *>              T = ( lambda  c  )
  244: *>                  (   0    T22 )
  245: *>
  246: *>  Then the reciprocal condition number is
  247: *>
  248: *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  249: *>
  250: *>  where sigma-min denotes the smallest singular value. We approximate
  251: *>  the smallest singular value by the reciprocal of an estimate of the
  252: *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  253: *>  defined to be abs(T(1,1)).
  254: *>
  255: *>  An approximate error bound for a computed right eigenvector VR(i)
  256: *>  is given by
  257: *>
  258: *>                      EPS * norm(T) / SEP(i)
  259: *> \endverbatim
  260: *>
  261: *  =====================================================================
  262:       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  263:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
  264:      $                   INFO )
  265: *
  266: *  -- LAPACK computational routine --
  267: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  268: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  269: *
  270: *     .. Scalar Arguments ..
  271:       CHARACTER          HOWMNY, JOB
  272:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
  273: *     ..
  274: *     .. Array Arguments ..
  275:       LOGICAL            SELECT( * )
  276:       INTEGER            IWORK( * )
  277:       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
  278:      $                   VR( LDVR, * ), WORK( LDWORK, * )
  279: *     ..
  280: *
  281: *  =====================================================================
  282: *
  283: *     .. Parameters ..
  284:       DOUBLE PRECISION   ZERO, ONE, TWO
  285:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  286: *     ..
  287: *     .. Local Scalars ..
  288:       LOGICAL            PAIR, SOMCON, WANTBH, WANTS, WANTSP
  289:       INTEGER            I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
  290:       DOUBLE PRECISION   BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
  291:      $                   MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
  292: *     ..
  293: *     .. Local Arrays ..
  294:       INTEGER            ISAVE( 3 )
  295:       DOUBLE PRECISION   DUMMY( 1 )
  296: *     ..
  297: *     .. External Functions ..
  298:       LOGICAL            LSAME
  299:       DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
  300:       EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
  301: *     ..
  302: *     .. External Subroutines ..
  303:       EXTERNAL           DLABAD, DLACN2, DLACPY, DLAQTR, DTREXC, XERBLA
  304: *     ..
  305: *     .. Intrinsic Functions ..
  306:       INTRINSIC          ABS, MAX, SQRT
  307: *     ..
  308: *     .. Executable Statements ..
  309: *
  310: *     Decode and test the input parameters
  311: *
  312:       WANTBH = LSAME( JOB, 'B' )
  313:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  314:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  315: *
  316:       SOMCON = LSAME( HOWMNY, 'S' )
  317: *
  318:       INFO = 0
  319:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  320:          INFO = -1
  321:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  322:          INFO = -2
  323:       ELSE IF( N.LT.0 ) THEN
  324:          INFO = -4
  325:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  326:          INFO = -6
  327:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  328:          INFO = -8
  329:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  330:          INFO = -10
  331:       ELSE
  332: *
  333: *        Set M to the number of eigenpairs for which condition numbers
  334: *        are required, and test MM.
  335: *
  336:          IF( SOMCON ) THEN
  337:             M = 0
  338:             PAIR = .FALSE.
  339:             DO 10 K = 1, N
  340:                IF( PAIR ) THEN
  341:                   PAIR = .FALSE.
  342:                ELSE
  343:                   IF( K.LT.N ) THEN
  344:                      IF( T( K+1, K ).EQ.ZERO ) THEN
  345:                         IF( SELECT( K ) )
  346:      $                     M = M + 1
  347:                      ELSE
  348:                         PAIR = .TRUE.
  349:                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
  350:      $                     M = M + 2
  351:                      END IF
  352:                   ELSE
  353:                      IF( SELECT( N ) )
  354:      $                  M = M + 1
  355:                   END IF
  356:                END IF
  357:    10       CONTINUE
  358:          ELSE
  359:             M = N
  360:          END IF
  361: *
  362:          IF( MM.LT.M ) THEN
  363:             INFO = -13
  364:          ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  365:             INFO = -16
  366:          END IF
  367:       END IF
  368:       IF( INFO.NE.0 ) THEN
  369:          CALL XERBLA( 'DTRSNA', -INFO )
  370:          RETURN
  371:       END IF
  372: *
  373: *     Quick return if possible
  374: *
  375:       IF( N.EQ.0 )
  376:      $   RETURN
  377: *
  378:       IF( N.EQ.1 ) THEN
  379:          IF( SOMCON ) THEN
  380:             IF( .NOT.SELECT( 1 ) )
  381:      $         RETURN
  382:          END IF
  383:          IF( WANTS )
  384:      $      S( 1 ) = ONE
  385:          IF( WANTSP )
  386:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
  387:          RETURN
  388:       END IF
  389: *
  390: *     Get machine constants
  391: *
  392:       EPS = DLAMCH( 'P' )
  393:       SMLNUM = DLAMCH( 'S' ) / EPS
  394:       BIGNUM = ONE / SMLNUM
  395:       CALL DLABAD( SMLNUM, BIGNUM )
  396: *
  397:       KS = 0
  398:       PAIR = .FALSE.
  399:       DO 60 K = 1, N
  400: *
  401: *        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
  402: *
  403:          IF( PAIR ) THEN
  404:             PAIR = .FALSE.
  405:             GO TO 60
  406:          ELSE
  407:             IF( K.LT.N )
  408:      $         PAIR = T( K+1, K ).NE.ZERO
  409:          END IF
  410: *
  411: *        Determine whether condition numbers are required for the k-th
  412: *        eigenpair.
  413: *
  414:          IF( SOMCON ) THEN
  415:             IF( PAIR ) THEN
  416:                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
  417:      $            GO TO 60
  418:             ELSE
  419:                IF( .NOT.SELECT( K ) )
  420:      $            GO TO 60
  421:             END IF
  422:          END IF
  423: *
  424:          KS = KS + 1
  425: *
  426:          IF( WANTS ) THEN
  427: *
  428: *           Compute the reciprocal condition number of the k-th
  429: *           eigenvalue.
  430: *
  431:             IF( .NOT.PAIR ) THEN
  432: *
  433: *              Real eigenvalue.
  434: *
  435:                PROD = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  436:                RNRM = DNRM2( N, VR( 1, KS ), 1 )
  437:                LNRM = DNRM2( N, VL( 1, KS ), 1 )
  438:                S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  439:             ELSE
  440: *
  441: *              Complex eigenvalue.
  442: *
  443:                PROD1 = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  444:                PROD1 = PROD1 + DDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
  445:      $                 1 )
  446:                PROD2 = DDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
  447:                PROD2 = PROD2 - DDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
  448:      $                 1 )
  449:                RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
  450:      $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
  451:                LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
  452:      $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
  453:                COND = DLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
  454:                S( KS ) = COND
  455:                S( KS+1 ) = COND
  456:             END IF
  457:          END IF
  458: *
  459:          IF( WANTSP ) THEN
  460: *
  461: *           Estimate the reciprocal condition number of the k-th
  462: *           eigenvector.
  463: *
  464: *           Copy the matrix T to the array WORK and swap the diagonal
  465: *           block beginning at T(k,k) to the (1,1) position.
  466: *
  467:             CALL DLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  468:             IFST = K
  469:             ILST = 1
  470:             CALL DTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
  471:      $                   WORK( 1, N+1 ), IERR )
  472: *
  473:             IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  474: *
  475: *              Could not swap because blocks not well separated
  476: *
  477:                SCALE = ONE
  478:                EST = BIGNUM
  479:             ELSE
  480: *
  481: *              Reordering successful
  482: *
  483:                IF( WORK( 2, 1 ).EQ.ZERO ) THEN
  484: *
  485: *                 Form C = T22 - lambda*I in WORK(2:N,2:N).
  486: *
  487:                   DO 20 I = 2, N
  488:                      WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  489:    20             CONTINUE
  490:                   N2 = 1
  491:                   NN = N - 1
  492:                ELSE
  493: *
  494: *                 Triangularize the 2 by 2 block by unitary
  495: *                 transformation U = [  cs   i*ss ]
  496: *                                    [ i*ss   cs  ].
  497: *                 such that the (1,1) position of WORK is complex
  498: *                 eigenvalue lambda with positive imaginary part. (2,2)
  499: *                 position of WORK is the complex eigenvalue lambda
  500: *                 with negative imaginary  part.
  501: *
  502:                   MU = SQRT( ABS( WORK( 1, 2 ) ) )*
  503:      $                 SQRT( ABS( WORK( 2, 1 ) ) )
  504:                   DELTA = DLAPY2( MU, WORK( 2, 1 ) )
  505:                   CS = MU / DELTA
  506:                   SN = -WORK( 2, 1 ) / DELTA
  507: *
  508: *                 Form
  509: *
  510: *                 C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
  511: *                                          [   mu                     ]
  512: *                                          [         ..               ]
  513: *                                          [             ..           ]
  514: *                                          [                  mu      ]
  515: *                 where C**T is transpose of matrix C,
  516: *                 and RWORK is stored starting in the N+1-st column of
  517: *                 WORK.
  518: *
  519:                   DO 30 J = 3, N
  520:                      WORK( 2, J ) = CS*WORK( 2, J )
  521:                      WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
  522:    30             CONTINUE
  523:                   WORK( 2, 2 ) = ZERO
  524: *
  525:                   WORK( 1, N+1 ) = TWO*MU
  526:                   DO 40 I = 2, N - 1
  527:                      WORK( I, N+1 ) = SN*WORK( 1, I+1 )
  528:    40             CONTINUE
  529:                   N2 = 2
  530:                   NN = 2*( N-1 )
  531:                END IF
  532: *
  533: *              Estimate norm(inv(C**T))
  534: *
  535:                EST = ZERO
  536:                KASE = 0
  537:    50          CONTINUE
  538:                CALL DLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
  539:      $                      EST, KASE, ISAVE )
  540:                IF( KASE.NE.0 ) THEN
  541:                   IF( KASE.EQ.1 ) THEN
  542:                      IF( N2.EQ.1 ) THEN
  543: *
  544: *                       Real eigenvalue: solve C**T*x = scale*c.
  545: *
  546:                         CALL DLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
  547:      $                               LDWORK, DUMMY, DUMM, SCALE,
  548:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  549:      $                               IERR )
  550:                      ELSE
  551: *
  552: *                       Complex eigenvalue: solve
  553: *                       C**T*(p+iq) = scale*(c+id) in real arithmetic.
  554: *
  555:                         CALL DLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
  556:      $                               LDWORK, WORK( 1, N+1 ), MU, SCALE,
  557:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  558:      $                               IERR )
  559:                      END IF
  560:                   ELSE
  561:                      IF( N2.EQ.1 ) THEN
  562: *
  563: *                       Real eigenvalue: solve C*x = scale*c.
  564: *
  565:                         CALL DLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
  566:      $                               LDWORK, DUMMY, DUMM, SCALE,
  567:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  568:      $                               IERR )
  569:                      ELSE
  570: *
  571: *                       Complex eigenvalue: solve
  572: *                       C*(p+iq) = scale*(c+id) in real arithmetic.
  573: *
  574:                         CALL DLAQTR( .FALSE., .FALSE., N-1,
  575:      $                               WORK( 2, 2 ), LDWORK,
  576:      $                               WORK( 1, N+1 ), MU, SCALE,
  577:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  578:      $                               IERR )
  579: *
  580:                      END IF
  581:                   END IF
  582: *
  583:                   GO TO 50
  584:                END IF
  585:             END IF
  586: *
  587:             SEP( KS ) = SCALE / MAX( EST, SMLNUM )
  588:             IF( PAIR )
  589:      $         SEP( KS+1 ) = SEP( KS )
  590:          END IF
  591: *
  592:          IF( PAIR )
  593:      $      KS = KS + 1
  594: *
  595:    60 CONTINUE
  596:       RETURN
  597: *
  598: *     End of DTRSNA
  599: *
  600:       END

CVSweb interface <joel.bertrand@systella.fr>