File:  [local] / rpl / lapack / lapack / dtrsna.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:06 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DTRSNA
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTRSNA + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsna.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsna.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsna.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
   22: *                          LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
   23: *                          INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          HOWMNY, JOB
   27: *       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
   33: *      $                   VR( LDVR, * ), WORK( LDWORK, * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DTRSNA estimates reciprocal condition numbers for specified
   43: *> eigenvalues and/or right eigenvectors of a real upper
   44: *> quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
   45: *> orthogonal).
   46: *>
   47: *> T must be in Schur canonical form (as returned by DHSEQR), that is,
   48: *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
   49: *> 2-by-2 diagonal block has its diagonal elements equal and its
   50: *> off-diagonal elements of opposite sign.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOB
   57: *> \verbatim
   58: *>          JOB is CHARACTER*1
   59: *>          Specifies whether condition numbers are required for
   60: *>          eigenvalues (S) or eigenvectors (SEP):
   61: *>          = 'E': for eigenvalues only (S);
   62: *>          = 'V': for eigenvectors only (SEP);
   63: *>          = 'B': for both eigenvalues and eigenvectors (S and SEP).
   64: *> \endverbatim
   65: *>
   66: *> \param[in] HOWMNY
   67: *> \verbatim
   68: *>          HOWMNY is CHARACTER*1
   69: *>          = 'A': compute condition numbers for all eigenpairs;
   70: *>          = 'S': compute condition numbers for selected eigenpairs
   71: *>                 specified by the array SELECT.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] SELECT
   75: *> \verbatim
   76: *>          SELECT is LOGICAL array, dimension (N)
   77: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   78: *>          condition numbers are required. To select condition numbers
   79: *>          for the eigenpair corresponding to a real eigenvalue w(j),
   80: *>          SELECT(j) must be set to .TRUE.. To select condition numbers
   81: *>          corresponding to a complex conjugate pair of eigenvalues w(j)
   82: *>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
   83: *>          set to .TRUE..
   84: *>          If HOWMNY = 'A', SELECT is not referenced.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] N
   88: *> \verbatim
   89: *>          N is INTEGER
   90: *>          The order of the matrix T. N >= 0.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] T
   94: *> \verbatim
   95: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
   96: *>          The upper quasi-triangular matrix T, in Schur canonical form.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDT
  100: *> \verbatim
  101: *>          LDT is INTEGER
  102: *>          The leading dimension of the array T. LDT >= max(1,N).
  103: *> \endverbatim
  104: *>
  105: *> \param[in] VL
  106: *> \verbatim
  107: *>          VL is DOUBLE PRECISION array, dimension (LDVL,M)
  108: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
  109: *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
  110: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  111: *>          must be stored in consecutive columns of VL, as returned by
  112: *>          DHSEIN or DTREVC.
  113: *>          If JOB = 'V', VL is not referenced.
  114: *> \endverbatim
  115: *>
  116: *> \param[in] LDVL
  117: *> \verbatim
  118: *>          LDVL is INTEGER
  119: *>          The leading dimension of the array VL.
  120: *>          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
  121: *> \endverbatim
  122: *>
  123: *> \param[in] VR
  124: *> \verbatim
  125: *>          VR is DOUBLE PRECISION array, dimension (LDVR,M)
  126: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
  127: *>          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
  128: *>          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
  129: *>          must be stored in consecutive columns of VR, as returned by
  130: *>          DHSEIN or DTREVC.
  131: *>          If JOB = 'V', VR is not referenced.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDVR
  135: *> \verbatim
  136: *>          LDVR is INTEGER
  137: *>          The leading dimension of the array VR.
  138: *>          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] S
  142: *> \verbatim
  143: *>          S is DOUBLE PRECISION array, dimension (MM)
  144: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
  145: *>          selected eigenvalues, stored in consecutive elements of the
  146: *>          array. For a complex conjugate pair of eigenvalues two
  147: *>          consecutive elements of S are set to the same value. Thus
  148: *>          S(j), SEP(j), and the j-th columns of VL and VR all
  149: *>          correspond to the same eigenpair (but not in general the
  150: *>          j-th eigenpair, unless all eigenpairs are selected).
  151: *>          If JOB = 'V', S is not referenced.
  152: *> \endverbatim
  153: *>
  154: *> \param[out] SEP
  155: *> \verbatim
  156: *>          SEP is DOUBLE PRECISION array, dimension (MM)
  157: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
  158: *>          numbers of the selected eigenvectors, stored in consecutive
  159: *>          elements of the array. For a complex eigenvector two
  160: *>          consecutive elements of SEP are set to the same value. If
  161: *>          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
  162: *>          is set to 0; this can only occur when the true value would be
  163: *>          very small anyway.
  164: *>          If JOB = 'E', SEP is not referenced.
  165: *> \endverbatim
  166: *>
  167: *> \param[in] MM
  168: *> \verbatim
  169: *>          MM is INTEGER
  170: *>          The number of elements in the arrays S (if JOB = 'E' or 'B')
  171: *>           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] M
  175: *> \verbatim
  176: *>          M is INTEGER
  177: *>          The number of elements of the arrays S and/or SEP actually
  178: *>          used to store the estimated condition numbers.
  179: *>          If HOWMNY = 'A', M is set to N.
  180: *> \endverbatim
  181: *>
  182: *> \param[out] WORK
  183: *> \verbatim
  184: *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6)
  185: *>          If JOB = 'E', WORK is not referenced.
  186: *> \endverbatim
  187: *>
  188: *> \param[in] LDWORK
  189: *> \verbatim
  190: *>          LDWORK is INTEGER
  191: *>          The leading dimension of the array WORK.
  192: *>          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  193: *> \endverbatim
  194: *>
  195: *> \param[out] IWORK
  196: *> \verbatim
  197: *>          IWORK is INTEGER array, dimension (2*(N-1))
  198: *>          If JOB = 'E', IWORK is not referenced.
  199: *> \endverbatim
  200: *>
  201: *> \param[out] INFO
  202: *> \verbatim
  203: *>          INFO is INTEGER
  204: *>          = 0: successful exit
  205: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  206: *> \endverbatim
  207: *
  208: *  Authors:
  209: *  ========
  210: *
  211: *> \author Univ. of Tennessee
  212: *> \author Univ. of California Berkeley
  213: *> \author Univ. of Colorado Denver
  214: *> \author NAG Ltd.
  215: *
  216: *> \date December 2016
  217: *
  218: *> \ingroup doubleOTHERcomputational
  219: *
  220: *> \par Further Details:
  221: *  =====================
  222: *>
  223: *> \verbatim
  224: *>
  225: *>  The reciprocal of the condition number of an eigenvalue lambda is
  226: *>  defined as
  227: *>
  228: *>          S(lambda) = |v**T*u| / (norm(u)*norm(v))
  229: *>
  230: *>  where u and v are the right and left eigenvectors of T corresponding
  231: *>  to lambda; v**T denotes the transpose of v, and norm(u)
  232: *>  denotes the Euclidean norm. These reciprocal condition numbers always
  233: *>  lie between zero (very badly conditioned) and one (very well
  234: *>  conditioned). If n = 1, S(lambda) is defined to be 1.
  235: *>
  236: *>  An approximate error bound for a computed eigenvalue W(i) is given by
  237: *>
  238: *>                      EPS * norm(T) / S(i)
  239: *>
  240: *>  where EPS is the machine precision.
  241: *>
  242: *>  The reciprocal of the condition number of the right eigenvector u
  243: *>  corresponding to lambda is defined as follows. Suppose
  244: *>
  245: *>              T = ( lambda  c  )
  246: *>                  (   0    T22 )
  247: *>
  248: *>  Then the reciprocal condition number is
  249: *>
  250: *>          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  251: *>
  252: *>  where sigma-min denotes the smallest singular value. We approximate
  253: *>  the smallest singular value by the reciprocal of an estimate of the
  254: *>  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  255: *>  defined to be abs(T(1,1)).
  256: *>
  257: *>  An approximate error bound for a computed right eigenvector VR(i)
  258: *>  is given by
  259: *>
  260: *>                      EPS * norm(T) / SEP(i)
  261: *> \endverbatim
  262: *>
  263: *  =====================================================================
  264:       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
  265:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
  266:      $                   INFO )
  267: *
  268: *  -- LAPACK computational routine (version 3.7.0) --
  269: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  270: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  271: *     December 2016
  272: *
  273: *     .. Scalar Arguments ..
  274:       CHARACTER          HOWMNY, JOB
  275:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
  276: *     ..
  277: *     .. Array Arguments ..
  278:       LOGICAL            SELECT( * )
  279:       INTEGER            IWORK( * )
  280:       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
  281:      $                   VR( LDVR, * ), WORK( LDWORK, * )
  282: *     ..
  283: *
  284: *  =====================================================================
  285: *
  286: *     .. Parameters ..
  287:       DOUBLE PRECISION   ZERO, ONE, TWO
  288:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  289: *     ..
  290: *     .. Local Scalars ..
  291:       LOGICAL            PAIR, SOMCON, WANTBH, WANTS, WANTSP
  292:       INTEGER            I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
  293:       DOUBLE PRECISION   BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
  294:      $                   MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
  295: *     ..
  296: *     .. Local Arrays ..
  297:       INTEGER            ISAVE( 3 )
  298:       DOUBLE PRECISION   DUMMY( 1 )
  299: *     ..
  300: *     .. External Functions ..
  301:       LOGICAL            LSAME
  302:       DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
  303:       EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
  304: *     ..
  305: *     .. External Subroutines ..
  306:       EXTERNAL           DLACN2, DLACPY, DLAQTR, DTREXC, XERBLA
  307: *     ..
  308: *     .. Intrinsic Functions ..
  309:       INTRINSIC          ABS, MAX, SQRT
  310: *     ..
  311: *     .. Executable Statements ..
  312: *
  313: *     Decode and test the input parameters
  314: *
  315:       WANTBH = LSAME( JOB, 'B' )
  316:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  317:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  318: *
  319:       SOMCON = LSAME( HOWMNY, 'S' )
  320: *
  321:       INFO = 0
  322:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  323:          INFO = -1
  324:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  325:          INFO = -2
  326:       ELSE IF( N.LT.0 ) THEN
  327:          INFO = -4
  328:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  329:          INFO = -6
  330:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  331:          INFO = -8
  332:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  333:          INFO = -10
  334:       ELSE
  335: *
  336: *        Set M to the number of eigenpairs for which condition numbers
  337: *        are required, and test MM.
  338: *
  339:          IF( SOMCON ) THEN
  340:             M = 0
  341:             PAIR = .FALSE.
  342:             DO 10 K = 1, N
  343:                IF( PAIR ) THEN
  344:                   PAIR = .FALSE.
  345:                ELSE
  346:                   IF( K.LT.N ) THEN
  347:                      IF( T( K+1, K ).EQ.ZERO ) THEN
  348:                         IF( SELECT( K ) )
  349:      $                     M = M + 1
  350:                      ELSE
  351:                         PAIR = .TRUE.
  352:                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
  353:      $                     M = M + 2
  354:                      END IF
  355:                   ELSE
  356:                      IF( SELECT( N ) )
  357:      $                  M = M + 1
  358:                   END IF
  359:                END IF
  360:    10       CONTINUE
  361:          ELSE
  362:             M = N
  363:          END IF
  364: *
  365:          IF( MM.LT.M ) THEN
  366:             INFO = -13
  367:          ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  368:             INFO = -16
  369:          END IF
  370:       END IF
  371:       IF( INFO.NE.0 ) THEN
  372:          CALL XERBLA( 'DTRSNA', -INFO )
  373:          RETURN
  374:       END IF
  375: *
  376: *     Quick return if possible
  377: *
  378:       IF( N.EQ.0 )
  379:      $   RETURN
  380: *
  381:       IF( N.EQ.1 ) THEN
  382:          IF( SOMCON ) THEN
  383:             IF( .NOT.SELECT( 1 ) )
  384:      $         RETURN
  385:          END IF
  386:          IF( WANTS )
  387:      $      S( 1 ) = ONE
  388:          IF( WANTSP )
  389:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
  390:          RETURN
  391:       END IF
  392: *
  393: *     Get machine constants
  394: *
  395:       EPS = DLAMCH( 'P' )
  396:       SMLNUM = DLAMCH( 'S' ) / EPS
  397:       BIGNUM = ONE / SMLNUM
  398:       CALL DLABAD( SMLNUM, BIGNUM )
  399: *
  400:       KS = 0
  401:       PAIR = .FALSE.
  402:       DO 60 K = 1, N
  403: *
  404: *        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
  405: *
  406:          IF( PAIR ) THEN
  407:             PAIR = .FALSE.
  408:             GO TO 60
  409:          ELSE
  410:             IF( K.LT.N )
  411:      $         PAIR = T( K+1, K ).NE.ZERO
  412:          END IF
  413: *
  414: *        Determine whether condition numbers are required for the k-th
  415: *        eigenpair.
  416: *
  417:          IF( SOMCON ) THEN
  418:             IF( PAIR ) THEN
  419:                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
  420:      $            GO TO 60
  421:             ELSE
  422:                IF( .NOT.SELECT( K ) )
  423:      $            GO TO 60
  424:             END IF
  425:          END IF
  426: *
  427:          KS = KS + 1
  428: *
  429:          IF( WANTS ) THEN
  430: *
  431: *           Compute the reciprocal condition number of the k-th
  432: *           eigenvalue.
  433: *
  434:             IF( .NOT.PAIR ) THEN
  435: *
  436: *              Real eigenvalue.
  437: *
  438:                PROD = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  439:                RNRM = DNRM2( N, VR( 1, KS ), 1 )
  440:                LNRM = DNRM2( N, VL( 1, KS ), 1 )
  441:                S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  442:             ELSE
  443: *
  444: *              Complex eigenvalue.
  445: *
  446:                PROD1 = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  447:                PROD1 = PROD1 + DDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
  448:      $                 1 )
  449:                PROD2 = DDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
  450:                PROD2 = PROD2 - DDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
  451:      $                 1 )
  452:                RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
  453:      $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
  454:                LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
  455:      $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
  456:                COND = DLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
  457:                S( KS ) = COND
  458:                S( KS+1 ) = COND
  459:             END IF
  460:          END IF
  461: *
  462:          IF( WANTSP ) THEN
  463: *
  464: *           Estimate the reciprocal condition number of the k-th
  465: *           eigenvector.
  466: *
  467: *           Copy the matrix T to the array WORK and swap the diagonal
  468: *           block beginning at T(k,k) to the (1,1) position.
  469: *
  470:             CALL DLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  471:             IFST = K
  472:             ILST = 1
  473:             CALL DTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
  474:      $                   WORK( 1, N+1 ), IERR )
  475: *
  476:             IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  477: *
  478: *              Could not swap because blocks not well separated
  479: *
  480:                SCALE = ONE
  481:                EST = BIGNUM
  482:             ELSE
  483: *
  484: *              Reordering successful
  485: *
  486:                IF( WORK( 2, 1 ).EQ.ZERO ) THEN
  487: *
  488: *                 Form C = T22 - lambda*I in WORK(2:N,2:N).
  489: *
  490:                   DO 20 I = 2, N
  491:                      WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  492:    20             CONTINUE
  493:                   N2 = 1
  494:                   NN = N - 1
  495:                ELSE
  496: *
  497: *                 Triangularize the 2 by 2 block by unitary
  498: *                 transformation U = [  cs   i*ss ]
  499: *                                    [ i*ss   cs  ].
  500: *                 such that the (1,1) position of WORK is complex
  501: *                 eigenvalue lambda with positive imaginary part. (2,2)
  502: *                 position of WORK is the complex eigenvalue lambda
  503: *                 with negative imaginary  part.
  504: *
  505:                   MU = SQRT( ABS( WORK( 1, 2 ) ) )*
  506:      $                 SQRT( ABS( WORK( 2, 1 ) ) )
  507:                   DELTA = DLAPY2( MU, WORK( 2, 1 ) )
  508:                   CS = MU / DELTA
  509:                   SN = -WORK( 2, 1 ) / DELTA
  510: *
  511: *                 Form
  512: *
  513: *                 C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
  514: *                                          [   mu                     ]
  515: *                                          [         ..               ]
  516: *                                          [             ..           ]
  517: *                                          [                  mu      ]
  518: *                 where C**T is transpose of matrix C,
  519: *                 and RWORK is stored starting in the N+1-st column of
  520: *                 WORK.
  521: *
  522:                   DO 30 J = 3, N
  523:                      WORK( 2, J ) = CS*WORK( 2, J )
  524:                      WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
  525:    30             CONTINUE
  526:                   WORK( 2, 2 ) = ZERO
  527: *
  528:                   WORK( 1, N+1 ) = TWO*MU
  529:                   DO 40 I = 2, N - 1
  530:                      WORK( I, N+1 ) = SN*WORK( 1, I+1 )
  531:    40             CONTINUE
  532:                   N2 = 2
  533:                   NN = 2*( N-1 )
  534:                END IF
  535: *
  536: *              Estimate norm(inv(C**T))
  537: *
  538:                EST = ZERO
  539:                KASE = 0
  540:    50          CONTINUE
  541:                CALL DLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
  542:      $                      EST, KASE, ISAVE )
  543:                IF( KASE.NE.0 ) THEN
  544:                   IF( KASE.EQ.1 ) THEN
  545:                      IF( N2.EQ.1 ) THEN
  546: *
  547: *                       Real eigenvalue: solve C**T*x = scale*c.
  548: *
  549:                         CALL DLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
  550:      $                               LDWORK, DUMMY, DUMM, SCALE,
  551:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  552:      $                               IERR )
  553:                      ELSE
  554: *
  555: *                       Complex eigenvalue: solve
  556: *                       C**T*(p+iq) = scale*(c+id) in real arithmetic.
  557: *
  558:                         CALL DLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
  559:      $                               LDWORK, WORK( 1, N+1 ), MU, SCALE,
  560:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  561:      $                               IERR )
  562:                      END IF
  563:                   ELSE
  564:                      IF( N2.EQ.1 ) THEN
  565: *
  566: *                       Real eigenvalue: solve C*x = scale*c.
  567: *
  568:                         CALL DLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
  569:      $                               LDWORK, DUMMY, DUMM, SCALE,
  570:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  571:      $                               IERR )
  572:                      ELSE
  573: *
  574: *                       Complex eigenvalue: solve
  575: *                       C*(p+iq) = scale*(c+id) in real arithmetic.
  576: *
  577:                         CALL DLAQTR( .FALSE., .FALSE., N-1,
  578:      $                               WORK( 2, 2 ), LDWORK,
  579:      $                               WORK( 1, N+1 ), MU, SCALE,
  580:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  581:      $                               IERR )
  582: *
  583:                      END IF
  584:                   END IF
  585: *
  586:                   GO TO 50
  587:                END IF
  588:             END IF
  589: *
  590:             SEP( KS ) = SCALE / MAX( EST, SMLNUM )
  591:             IF( PAIR )
  592:      $         SEP( KS+1 ) = SEP( KS )
  593:          END IF
  594: *
  595:          IF( PAIR )
  596:      $      KS = KS + 1
  597: *
  598:    60 CONTINUE
  599:       RETURN
  600: *
  601: *     End of DTRSNA
  602: *
  603:       END

CVSweb interface <joel.bertrand@systella.fr>