File:  [local] / rpl / lapack / lapack / dtrsna.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
    2:      $                   LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK,
    3:      $                   INFO )
    4: *
    5: *  -- LAPACK routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   11: *
   12: *     .. Scalar Arguments ..
   13:       CHARACTER          HOWMNY, JOB
   14:       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
   15: *     ..
   16: *     .. Array Arguments ..
   17:       LOGICAL            SELECT( * )
   18:       INTEGER            IWORK( * )
   19:       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ),
   20:      $                   VR( LDVR, * ), WORK( LDWORK, * )
   21: *     ..
   22: *
   23: *  Purpose
   24: *  =======
   25: *
   26: *  DTRSNA estimates reciprocal condition numbers for specified
   27: *  eigenvalues and/or right eigenvectors of a real upper
   28: *  quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q
   29: *  orthogonal).
   30: *
   31: *  T must be in Schur canonical form (as returned by DHSEQR), that is,
   32: *  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
   33: *  2-by-2 diagonal block has its diagonal elements equal and its
   34: *  off-diagonal elements of opposite sign.
   35: *
   36: *  Arguments
   37: *  =========
   38: *
   39: *  JOB     (input) CHARACTER*1
   40: *          Specifies whether condition numbers are required for
   41: *          eigenvalues (S) or eigenvectors (SEP):
   42: *          = 'E': for eigenvalues only (S);
   43: *          = 'V': for eigenvectors only (SEP);
   44: *          = 'B': for both eigenvalues and eigenvectors (S and SEP).
   45: *
   46: *  HOWMNY  (input) CHARACTER*1
   47: *          = 'A': compute condition numbers for all eigenpairs;
   48: *          = 'S': compute condition numbers for selected eigenpairs
   49: *                 specified by the array SELECT.
   50: *
   51: *  SELECT  (input) LOGICAL array, dimension (N)
   52: *          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
   53: *          condition numbers are required. To select condition numbers
   54: *          for the eigenpair corresponding to a real eigenvalue w(j),
   55: *          SELECT(j) must be set to .TRUE.. To select condition numbers
   56: *          corresponding to a complex conjugate pair of eigenvalues w(j)
   57: *          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
   58: *          set to .TRUE..
   59: *          If HOWMNY = 'A', SELECT is not referenced.
   60: *
   61: *  N       (input) INTEGER
   62: *          The order of the matrix T. N >= 0.
   63: *
   64: *  T       (input) DOUBLE PRECISION array, dimension (LDT,N)
   65: *          The upper quasi-triangular matrix T, in Schur canonical form.
   66: *
   67: *  LDT     (input) INTEGER
   68: *          The leading dimension of the array T. LDT >= max(1,N).
   69: *
   70: *  VL      (input) DOUBLE PRECISION array, dimension (LDVL,M)
   71: *          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
   72: *          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
   73: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
   74: *          must be stored in consecutive columns of VL, as returned by
   75: *          DHSEIN or DTREVC.
   76: *          If JOB = 'V', VL is not referenced.
   77: *
   78: *  LDVL    (input) INTEGER
   79: *          The leading dimension of the array VL.
   80: *          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
   81: *
   82: *  VR      (input) DOUBLE PRECISION array, dimension (LDVR,M)
   83: *          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
   84: *          (or of any Q*T*Q**T with Q orthogonal), corresponding to the
   85: *          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
   86: *          must be stored in consecutive columns of VR, as returned by
   87: *          DHSEIN or DTREVC.
   88: *          If JOB = 'V', VR is not referenced.
   89: *
   90: *  LDVR    (input) INTEGER
   91: *          The leading dimension of the array VR.
   92: *          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
   93: *
   94: *  S       (output) DOUBLE PRECISION array, dimension (MM)
   95: *          If JOB = 'E' or 'B', the reciprocal condition numbers of the
   96: *          selected eigenvalues, stored in consecutive elements of the
   97: *          array. For a complex conjugate pair of eigenvalues two
   98: *          consecutive elements of S are set to the same value. Thus
   99: *          S(j), SEP(j), and the j-th columns of VL and VR all
  100: *          correspond to the same eigenpair (but not in general the
  101: *          j-th eigenpair, unless all eigenpairs are selected).
  102: *          If JOB = 'V', S is not referenced.
  103: *
  104: *  SEP     (output) DOUBLE PRECISION array, dimension (MM)
  105: *          If JOB = 'V' or 'B', the estimated reciprocal condition
  106: *          numbers of the selected eigenvectors, stored in consecutive
  107: *          elements of the array. For a complex eigenvector two
  108: *          consecutive elements of SEP are set to the same value. If
  109: *          the eigenvalues cannot be reordered to compute SEP(j), SEP(j)
  110: *          is set to 0; this can only occur when the true value would be
  111: *          very small anyway.
  112: *          If JOB = 'E', SEP is not referenced.
  113: *
  114: *  MM      (input) INTEGER
  115: *          The number of elements in the arrays S (if JOB = 'E' or 'B')
  116: *           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
  117: *
  118: *  M       (output) INTEGER
  119: *          The number of elements of the arrays S and/or SEP actually
  120: *          used to store the estimated condition numbers.
  121: *          If HOWMNY = 'A', M is set to N.
  122: *
  123: *  WORK    (workspace) DOUBLE PRECISION array, dimension (LDWORK,N+6)
  124: *          If JOB = 'E', WORK is not referenced.
  125: *
  126: *  LDWORK  (input) INTEGER
  127: *          The leading dimension of the array WORK.
  128: *          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
  129: *
  130: *  IWORK   (workspace) INTEGER array, dimension (2*(N-1))
  131: *          If JOB = 'E', IWORK is not referenced.
  132: *
  133: *  INFO    (output) INTEGER
  134: *          = 0: successful exit
  135: *          < 0: if INFO = -i, the i-th argument had an illegal value
  136: *
  137: *  Further Details
  138: *  ===============
  139: *
  140: *  The reciprocal of the condition number of an eigenvalue lambda is
  141: *  defined as
  142: *
  143: *          S(lambda) = |v'*u| / (norm(u)*norm(v))
  144: *
  145: *  where u and v are the right and left eigenvectors of T corresponding
  146: *  to lambda; v' denotes the conjugate-transpose of v, and norm(u)
  147: *  denotes the Euclidean norm. These reciprocal condition numbers always
  148: *  lie between zero (very badly conditioned) and one (very well
  149: *  conditioned). If n = 1, S(lambda) is defined to be 1.
  150: *
  151: *  An approximate error bound for a computed eigenvalue W(i) is given by
  152: *
  153: *                      EPS * norm(T) / S(i)
  154: *
  155: *  where EPS is the machine precision.
  156: *
  157: *  The reciprocal of the condition number of the right eigenvector u
  158: *  corresponding to lambda is defined as follows. Suppose
  159: *
  160: *              T = ( lambda  c  )
  161: *                  (   0    T22 )
  162: *
  163: *  Then the reciprocal condition number is
  164: *
  165: *          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
  166: *
  167: *  where sigma-min denotes the smallest singular value. We approximate
  168: *  the smallest singular value by the reciprocal of an estimate of the
  169: *  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
  170: *  defined to be abs(T(1,1)).
  171: *
  172: *  An approximate error bound for a computed right eigenvector VR(i)
  173: *  is given by
  174: *
  175: *                      EPS * norm(T) / SEP(i)
  176: *
  177: *  =====================================================================
  178: *
  179: *     .. Parameters ..
  180:       DOUBLE PRECISION   ZERO, ONE, TWO
  181:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
  182: *     ..
  183: *     .. Local Scalars ..
  184:       LOGICAL            PAIR, SOMCON, WANTBH, WANTS, WANTSP
  185:       INTEGER            I, IERR, IFST, ILST, J, K, KASE, KS, N2, NN
  186:       DOUBLE PRECISION   BIGNUM, COND, CS, DELTA, DUMM, EPS, EST, LNRM,
  187:      $                   MU, PROD, PROD1, PROD2, RNRM, SCALE, SMLNUM, SN
  188: *     ..
  189: *     .. Local Arrays ..
  190:       INTEGER            ISAVE( 3 )
  191:       DOUBLE PRECISION   DUMMY( 1 )
  192: *     ..
  193: *     .. External Functions ..
  194:       LOGICAL            LSAME
  195:       DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
  196:       EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
  197: *     ..
  198: *     .. External Subroutines ..
  199:       EXTERNAL           DLACN2, DLACPY, DLAQTR, DTREXC, XERBLA
  200: *     ..
  201: *     .. Intrinsic Functions ..
  202:       INTRINSIC          ABS, MAX, SQRT
  203: *     ..
  204: *     .. Executable Statements ..
  205: *
  206: *     Decode and test the input parameters
  207: *
  208:       WANTBH = LSAME( JOB, 'B' )
  209:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  210:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  211: *
  212:       SOMCON = LSAME( HOWMNY, 'S' )
  213: *
  214:       INFO = 0
  215:       IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN
  216:          INFO = -1
  217:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  218:          INFO = -2
  219:       ELSE IF( N.LT.0 ) THEN
  220:          INFO = -4
  221:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  222:          INFO = -6
  223:       ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
  224:          INFO = -8
  225:       ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
  226:          INFO = -10
  227:       ELSE
  228: *
  229: *        Set M to the number of eigenpairs for which condition numbers
  230: *        are required, and test MM.
  231: *
  232:          IF( SOMCON ) THEN
  233:             M = 0
  234:             PAIR = .FALSE.
  235:             DO 10 K = 1, N
  236:                IF( PAIR ) THEN
  237:                   PAIR = .FALSE.
  238:                ELSE
  239:                   IF( K.LT.N ) THEN
  240:                      IF( T( K+1, K ).EQ.ZERO ) THEN
  241:                         IF( SELECT( K ) )
  242:      $                     M = M + 1
  243:                      ELSE
  244:                         PAIR = .TRUE.
  245:                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
  246:      $                     M = M + 2
  247:                      END IF
  248:                   ELSE
  249:                      IF( SELECT( N ) )
  250:      $                  M = M + 1
  251:                   END IF
  252:                END IF
  253:    10       CONTINUE
  254:          ELSE
  255:             M = N
  256:          END IF
  257: *
  258:          IF( MM.LT.M ) THEN
  259:             INFO = -13
  260:          ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
  261:             INFO = -16
  262:          END IF
  263:       END IF
  264:       IF( INFO.NE.0 ) THEN
  265:          CALL XERBLA( 'DTRSNA', -INFO )
  266:          RETURN
  267:       END IF
  268: *
  269: *     Quick return if possible
  270: *
  271:       IF( N.EQ.0 )
  272:      $   RETURN
  273: *
  274:       IF( N.EQ.1 ) THEN
  275:          IF( SOMCON ) THEN
  276:             IF( .NOT.SELECT( 1 ) )
  277:      $         RETURN
  278:          END IF
  279:          IF( WANTS )
  280:      $      S( 1 ) = ONE
  281:          IF( WANTSP )
  282:      $      SEP( 1 ) = ABS( T( 1, 1 ) )
  283:          RETURN
  284:       END IF
  285: *
  286: *     Get machine constants
  287: *
  288:       EPS = DLAMCH( 'P' )
  289:       SMLNUM = DLAMCH( 'S' ) / EPS
  290:       BIGNUM = ONE / SMLNUM
  291:       CALL DLABAD( SMLNUM, BIGNUM )
  292: *
  293:       KS = 0
  294:       PAIR = .FALSE.
  295:       DO 60 K = 1, N
  296: *
  297: *        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block.
  298: *
  299:          IF( PAIR ) THEN
  300:             PAIR = .FALSE.
  301:             GO TO 60
  302:          ELSE
  303:             IF( K.LT.N )
  304:      $         PAIR = T( K+1, K ).NE.ZERO
  305:          END IF
  306: *
  307: *        Determine whether condition numbers are required for the k-th
  308: *        eigenpair.
  309: *
  310:          IF( SOMCON ) THEN
  311:             IF( PAIR ) THEN
  312:                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
  313:      $            GO TO 60
  314:             ELSE
  315:                IF( .NOT.SELECT( K ) )
  316:      $            GO TO 60
  317:             END IF
  318:          END IF
  319: *
  320:          KS = KS + 1
  321: *
  322:          IF( WANTS ) THEN
  323: *
  324: *           Compute the reciprocal condition number of the k-th
  325: *           eigenvalue.
  326: *
  327:             IF( .NOT.PAIR ) THEN
  328: *
  329: *              Real eigenvalue.
  330: *
  331:                PROD = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  332:                RNRM = DNRM2( N, VR( 1, KS ), 1 )
  333:                LNRM = DNRM2( N, VL( 1, KS ), 1 )
  334:                S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
  335:             ELSE
  336: *
  337: *              Complex eigenvalue.
  338: *
  339:                PROD1 = DDOT( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
  340:                PROD1 = PROD1 + DDOT( N, VR( 1, KS+1 ), 1, VL( 1, KS+1 ),
  341:      $                 1 )
  342:                PROD2 = DDOT( N, VL( 1, KS ), 1, VR( 1, KS+1 ), 1 )
  343:                PROD2 = PROD2 - DDOT( N, VL( 1, KS+1 ), 1, VR( 1, KS ),
  344:      $                 1 )
  345:                RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
  346:      $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
  347:                LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
  348:      $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
  349:                COND = DLAPY2( PROD1, PROD2 ) / ( RNRM*LNRM )
  350:                S( KS ) = COND
  351:                S( KS+1 ) = COND
  352:             END IF
  353:          END IF
  354: *
  355:          IF( WANTSP ) THEN
  356: *
  357: *           Estimate the reciprocal condition number of the k-th
  358: *           eigenvector.
  359: *
  360: *           Copy the matrix T to the array WORK and swap the diagonal
  361: *           block beginning at T(k,k) to the (1,1) position.
  362: *
  363:             CALL DLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
  364:             IFST = K
  365:             ILST = 1
  366:             CALL DTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, IFST, ILST,
  367:      $                   WORK( 1, N+1 ), IERR )
  368: *
  369:             IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  370: *
  371: *              Could not swap because blocks not well separated
  372: *
  373:                SCALE = ONE
  374:                EST = BIGNUM
  375:             ELSE
  376: *
  377: *              Reordering successful
  378: *
  379:                IF( WORK( 2, 1 ).EQ.ZERO ) THEN
  380: *
  381: *                 Form C = T22 - lambda*I in WORK(2:N,2:N).
  382: *
  383:                   DO 20 I = 2, N
  384:                      WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 )
  385:    20             CONTINUE
  386:                   N2 = 1
  387:                   NN = N - 1
  388:                ELSE
  389: *
  390: *                 Triangularize the 2 by 2 block by unitary
  391: *                 transformation U = [  cs   i*ss ]
  392: *                                    [ i*ss   cs  ].
  393: *                 such that the (1,1) position of WORK is complex
  394: *                 eigenvalue lambda with positive imaginary part. (2,2)
  395: *                 position of WORK is the complex eigenvalue lambda
  396: *                 with negative imaginary  part.
  397: *
  398:                   MU = SQRT( ABS( WORK( 1, 2 ) ) )*
  399:      $                 SQRT( ABS( WORK( 2, 1 ) ) )
  400:                   DELTA = DLAPY2( MU, WORK( 2, 1 ) )
  401:                   CS = MU / DELTA
  402:                   SN = -WORK( 2, 1 ) / DELTA
  403: *
  404: *                 Form
  405: *
  406: *                 C' = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ]
  407: *                                        [   mu                     ]
  408: *                                        [         ..               ]
  409: *                                        [             ..           ]
  410: *                                        [                  mu      ]
  411: *                 where C' is conjugate transpose of complex matrix C,
  412: *                 and RWORK is stored starting in the N+1-st column of
  413: *                 WORK.
  414: *
  415:                   DO 30 J = 3, N
  416:                      WORK( 2, J ) = CS*WORK( 2, J )
  417:                      WORK( J, J ) = WORK( J, J ) - WORK( 1, 1 )
  418:    30             CONTINUE
  419:                   WORK( 2, 2 ) = ZERO
  420: *
  421:                   WORK( 1, N+1 ) = TWO*MU
  422:                   DO 40 I = 2, N - 1
  423:                      WORK( I, N+1 ) = SN*WORK( 1, I+1 )
  424:    40             CONTINUE
  425:                   N2 = 2
  426:                   NN = 2*( N-1 )
  427:                END IF
  428: *
  429: *              Estimate norm(inv(C'))
  430: *
  431:                EST = ZERO
  432:                KASE = 0
  433:    50          CONTINUE
  434:                CALL DLACN2( NN, WORK( 1, N+2 ), WORK( 1, N+4 ), IWORK,
  435:      $                      EST, KASE, ISAVE )
  436:                IF( KASE.NE.0 ) THEN
  437:                   IF( KASE.EQ.1 ) THEN
  438:                      IF( N2.EQ.1 ) THEN
  439: *
  440: *                       Real eigenvalue: solve C'*x = scale*c.
  441: *
  442:                         CALL DLAQTR( .TRUE., .TRUE., N-1, WORK( 2, 2 ),
  443:      $                               LDWORK, DUMMY, DUMM, SCALE,
  444:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  445:      $                               IERR )
  446:                      ELSE
  447: *
  448: *                       Complex eigenvalue: solve
  449: *                       C'*(p+iq) = scale*(c+id) in real arithmetic.
  450: *
  451:                         CALL DLAQTR( .TRUE., .FALSE., N-1, WORK( 2, 2 ),
  452:      $                               LDWORK, WORK( 1, N+1 ), MU, SCALE,
  453:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  454:      $                               IERR )
  455:                      END IF
  456:                   ELSE
  457:                      IF( N2.EQ.1 ) THEN
  458: *
  459: *                       Real eigenvalue: solve C*x = scale*c.
  460: *
  461:                         CALL DLAQTR( .FALSE., .TRUE., N-1, WORK( 2, 2 ),
  462:      $                               LDWORK, DUMMY, DUMM, SCALE,
  463:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  464:      $                               IERR )
  465:                      ELSE
  466: *
  467: *                       Complex eigenvalue: solve
  468: *                       C*(p+iq) = scale*(c+id) in real arithmetic.
  469: *
  470:                         CALL DLAQTR( .FALSE., .FALSE., N-1,
  471:      $                               WORK( 2, 2 ), LDWORK,
  472:      $                               WORK( 1, N+1 ), MU, SCALE,
  473:      $                               WORK( 1, N+4 ), WORK( 1, N+6 ),
  474:      $                               IERR )
  475: *
  476:                      END IF
  477:                   END IF
  478: *
  479:                   GO TO 50
  480:                END IF
  481:             END IF
  482: *
  483:             SEP( KS ) = SCALE / MAX( EST, SMLNUM )
  484:             IF( PAIR )
  485:      $         SEP( KS+1 ) = SEP( KS )
  486:          END IF
  487: *
  488:          IF( PAIR )
  489:      $      KS = KS + 1
  490: *
  491:    60 CONTINUE
  492:       RETURN
  493: *
  494: *     End of DTRSNA
  495: *
  496:       END

CVSweb interface <joel.bertrand@systella.fr>