File:  [local] / rpl / lapack / lapack / dtrsen.f
Revision 1.1: download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:45 2010 UTC (14 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Initial revision

    1:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
    2:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       CHARACTER          COMPQ, JOB
   11:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
   12:       DOUBLE PRECISION   S, SEP
   13: *     ..
   14: *     .. Array Arguments ..
   15:       LOGICAL            SELECT( * )
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
   18:      $                   WR( * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DTRSEN reorders the real Schur factorization of a real matrix
   25: *  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
   26: *  the leading diagonal blocks of the upper quasi-triangular matrix T,
   27: *  and the leading columns of Q form an orthonormal basis of the
   28: *  corresponding right invariant subspace.
   29: *
   30: *  Optionally the routine computes the reciprocal condition numbers of
   31: *  the cluster of eigenvalues and/or the invariant subspace.
   32: *
   33: *  T must be in Schur canonical form (as returned by DHSEQR), that is,
   34: *  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
   35: *  2-by-2 diagonal block has its diagonal elemnts equal and its
   36: *  off-diagonal elements of opposite sign.
   37: *
   38: *  Arguments
   39: *  =========
   40: *
   41: *  JOB     (input) CHARACTER*1
   42: *          Specifies whether condition numbers are required for the
   43: *          cluster of eigenvalues (S) or the invariant subspace (SEP):
   44: *          = 'N': none;
   45: *          = 'E': for eigenvalues only (S);
   46: *          = 'V': for invariant subspace only (SEP);
   47: *          = 'B': for both eigenvalues and invariant subspace (S and
   48: *                 SEP).
   49: *
   50: *  COMPQ   (input) CHARACTER*1
   51: *          = 'V': update the matrix Q of Schur vectors;
   52: *          = 'N': do not update Q.
   53: *
   54: *  SELECT  (input) LOGICAL array, dimension (N)
   55: *          SELECT specifies the eigenvalues in the selected cluster. To
   56: *          select a real eigenvalue w(j), SELECT(j) must be set to
   57: *          .TRUE.. To select a complex conjugate pair of eigenvalues
   58: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
   59: *          either SELECT(j) or SELECT(j+1) or both must be set to
   60: *          .TRUE.; a complex conjugate pair of eigenvalues must be
   61: *          either both included in the cluster or both excluded.
   62: *
   63: *  N       (input) INTEGER
   64: *          The order of the matrix T. N >= 0.
   65: *
   66: *  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
   67: *          On entry, the upper quasi-triangular matrix T, in Schur
   68: *          canonical form.
   69: *          On exit, T is overwritten by the reordered matrix T, again in
   70: *          Schur canonical form, with the selected eigenvalues in the
   71: *          leading diagonal blocks.
   72: *
   73: *  LDT     (input) INTEGER
   74: *          The leading dimension of the array T. LDT >= max(1,N).
   75: *
   76: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
   77: *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
   78: *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
   79: *          orthogonal transformation matrix which reorders T; the
   80: *          leading M columns of Q form an orthonormal basis for the
   81: *          specified invariant subspace.
   82: *          If COMPQ = 'N', Q is not referenced.
   83: *
   84: *  LDQ     (input) INTEGER
   85: *          The leading dimension of the array Q.
   86: *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
   87: *
   88: *  WR      (output) DOUBLE PRECISION array, dimension (N)
   89: *  WI      (output) DOUBLE PRECISION array, dimension (N)
   90: *          The real and imaginary parts, respectively, of the reordered
   91: *          eigenvalues of T. The eigenvalues are stored in the same
   92: *          order as on the diagonal of T, with WR(i) = T(i,i) and, if
   93: *          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
   94: *          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
   95: *          sufficiently ill-conditioned, then its value may differ
   96: *          significantly from its value before reordering.
   97: *
   98: *  M       (output) INTEGER
   99: *          The dimension of the specified invariant subspace.
  100: *          0 < = M <= N.
  101: *
  102: *  S       (output) DOUBLE PRECISION
  103: *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
  104: *          condition number for the selected cluster of eigenvalues.
  105: *          S cannot underestimate the true reciprocal condition number
  106: *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
  107: *          If JOB = 'N' or 'V', S is not referenced.
  108: *
  109: *  SEP     (output) DOUBLE PRECISION
  110: *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
  111: *          condition number of the specified invariant subspace. If
  112: *          M = 0 or N, SEP = norm(T).
  113: *          If JOB = 'N' or 'E', SEP is not referenced.
  114: *
  115: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  117: *
  118: *  LWORK   (input) INTEGER
  119: *          The dimension of the array WORK.
  120: *          If JOB = 'N', LWORK >= max(1,N);
  121: *          if JOB = 'E', LWORK >= max(1,M*(N-M));
  122: *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
  123: *
  124: *          If LWORK = -1, then a workspace query is assumed; the routine
  125: *          only calculates the optimal size of the WORK array, returns
  126: *          this value as the first entry of the WORK array, and no error
  127: *          message related to LWORK is issued by XERBLA.
  128: *
  129: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
  130: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  131: *
  132: *  LIWORK  (input) INTEGER
  133: *          The dimension of the array IWORK.
  134: *          If JOB = 'N' or 'E', LIWORK >= 1;
  135: *          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
  136: *
  137: *          If LIWORK = -1, then a workspace query is assumed; the
  138: *          routine only calculates the optimal size of the IWORK array,
  139: *          returns this value as the first entry of the IWORK array, and
  140: *          no error message related to LIWORK is issued by XERBLA.
  141: *
  142: *  INFO    (output) INTEGER
  143: *          = 0: successful exit
  144: *          < 0: if INFO = -i, the i-th argument had an illegal value
  145: *          = 1: reordering of T failed because some eigenvalues are too
  146: *               close to separate (the problem is very ill-conditioned);
  147: *               T may have been partially reordered, and WR and WI
  148: *               contain the eigenvalues in the same order as in T; S and
  149: *               SEP (if requested) are set to zero.
  150: *
  151: *  Further Details
  152: *  ===============
  153: *
  154: *  DTRSEN first collects the selected eigenvalues by computing an
  155: *  orthogonal transformation Z to move them to the top left corner of T.
  156: *  In other words, the selected eigenvalues are the eigenvalues of T11
  157: *  in:
  158: *
  159: *                Z'*T*Z = ( T11 T12 ) n1
  160: *                         (  0  T22 ) n2
  161: *                            n1  n2
  162: *
  163: *  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
  164: *  of Z span the specified invariant subspace of T.
  165: *
  166: *  If T has been obtained from the real Schur factorization of a matrix
  167: *  A = Q*T*Q', then the reordered real Schur factorization of A is given
  168: *  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
  169: *  the corresponding invariant subspace of A.
  170: *
  171: *  The reciprocal condition number of the average of the eigenvalues of
  172: *  T11 may be returned in S. S lies between 0 (very badly conditioned)
  173: *  and 1 (very well conditioned). It is computed as follows. First we
  174: *  compute R so that
  175: *
  176: *                         P = ( I  R ) n1
  177: *                             ( 0  0 ) n2
  178: *                               n1 n2
  179: *
  180: *  is the projector on the invariant subspace associated with T11.
  181: *  R is the solution of the Sylvester equation:
  182: *
  183: *                        T11*R - R*T22 = T12.
  184: *
  185: *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
  186: *  the two-norm of M. Then S is computed as the lower bound
  187: *
  188: *                      (1 + F-norm(R)**2)**(-1/2)
  189: *
  190: *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
  191: *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
  192: *  sqrt(N).
  193: *
  194: *  An approximate error bound for the computed average of the
  195: *  eigenvalues of T11 is
  196: *
  197: *                         EPS * norm(T) / S
  198: *
  199: *  where EPS is the machine precision.
  200: *
  201: *  The reciprocal condition number of the right invariant subspace
  202: *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
  203: *  SEP is defined as the separation of T11 and T22:
  204: *
  205: *                     sep( T11, T22 ) = sigma-min( C )
  206: *
  207: *  where sigma-min(C) is the smallest singular value of the
  208: *  n1*n2-by-n1*n2 matrix
  209: *
  210: *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
  211: *
  212: *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
  213: *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
  214: *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
  215: *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
  216: *
  217: *  When SEP is small, small changes in T can cause large changes in
  218: *  the invariant subspace. An approximate bound on the maximum angular
  219: *  error in the computed right invariant subspace is
  220: *
  221: *                      EPS * norm(T) / SEP
  222: *
  223: *  =====================================================================
  224: *
  225: *     .. Parameters ..
  226:       DOUBLE PRECISION   ZERO, ONE
  227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  228: *     ..
  229: *     .. Local Scalars ..
  230:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
  231:      $                   WANTSP
  232:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
  233:      $                   NN
  234:       DOUBLE PRECISION   EST, RNORM, SCALE
  235: *     ..
  236: *     .. Local Arrays ..
  237:       INTEGER            ISAVE( 3 )
  238: *     ..
  239: *     .. External Functions ..
  240:       LOGICAL            LSAME
  241:       DOUBLE PRECISION   DLANGE
  242:       EXTERNAL           LSAME, DLANGE
  243: *     ..
  244: *     .. External Subroutines ..
  245:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
  246: *     ..
  247: *     .. Intrinsic Functions ..
  248:       INTRINSIC          ABS, MAX, SQRT
  249: *     ..
  250: *     .. Executable Statements ..
  251: *
  252: *     Decode and test the input parameters
  253: *
  254:       WANTBH = LSAME( JOB, 'B' )
  255:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  256:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  257:       WANTQ = LSAME( COMPQ, 'V' )
  258: *
  259:       INFO = 0
  260:       LQUERY = ( LWORK.EQ.-1 )
  261:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
  262:      $     THEN
  263:          INFO = -1
  264:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  265:          INFO = -2
  266:       ELSE IF( N.LT.0 ) THEN
  267:          INFO = -4
  268:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  269:          INFO = -6
  270:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  271:          INFO = -8
  272:       ELSE
  273: *
  274: *        Set M to the dimension of the specified invariant subspace,
  275: *        and test LWORK and LIWORK.
  276: *
  277:          M = 0
  278:          PAIR = .FALSE.
  279:          DO 10 K = 1, N
  280:             IF( PAIR ) THEN
  281:                PAIR = .FALSE.
  282:             ELSE
  283:                IF( K.LT.N ) THEN
  284:                   IF( T( K+1, K ).EQ.ZERO ) THEN
  285:                      IF( SELECT( K ) )
  286:      $                  M = M + 1
  287:                   ELSE
  288:                      PAIR = .TRUE.
  289:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
  290:      $                  M = M + 2
  291:                   END IF
  292:                ELSE
  293:                   IF( SELECT( N ) )
  294:      $               M = M + 1
  295:                END IF
  296:             END IF
  297:    10    CONTINUE
  298: *
  299:          N1 = M
  300:          N2 = N - M
  301:          NN = N1*N2
  302: *
  303:          IF( WANTSP ) THEN
  304:             LWMIN = MAX( 1, 2*NN )
  305:             LIWMIN = MAX( 1, NN )
  306:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
  307:             LWMIN = MAX( 1, N )
  308:             LIWMIN = 1
  309:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
  310:             LWMIN = MAX( 1, NN )
  311:             LIWMIN = 1
  312:          END IF
  313: *
  314:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  315:             INFO = -15
  316:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  317:             INFO = -17
  318:          END IF
  319:       END IF
  320: *
  321:       IF( INFO.EQ.0 ) THEN
  322:          WORK( 1 ) = LWMIN
  323:          IWORK( 1 ) = LIWMIN
  324:       END IF
  325: *
  326:       IF( INFO.NE.0 ) THEN
  327:          CALL XERBLA( 'DTRSEN', -INFO )
  328:          RETURN
  329:       ELSE IF( LQUERY ) THEN
  330:          RETURN
  331:       END IF
  332: *
  333: *     Quick return if possible.
  334: *
  335:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  336:          IF( WANTS )
  337:      $      S = ONE
  338:          IF( WANTSP )
  339:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
  340:          GO TO 40
  341:       END IF
  342: *
  343: *     Collect the selected blocks at the top-left corner of T.
  344: *
  345:       KS = 0
  346:       PAIR = .FALSE.
  347:       DO 20 K = 1, N
  348:          IF( PAIR ) THEN
  349:             PAIR = .FALSE.
  350:          ELSE
  351:             SWAP = SELECT( K )
  352:             IF( K.LT.N ) THEN
  353:                IF( T( K+1, K ).NE.ZERO ) THEN
  354:                   PAIR = .TRUE.
  355:                   SWAP = SWAP .OR. SELECT( K+1 )
  356:                END IF
  357:             END IF
  358:             IF( SWAP ) THEN
  359:                KS = KS + 1
  360: *
  361: *              Swap the K-th block to position KS.
  362: *
  363:                IERR = 0
  364:                KK = K
  365:                IF( K.NE.KS )
  366:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
  367:      $                         IERR )
  368:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  369: *
  370: *                 Blocks too close to swap: exit.
  371: *
  372:                   INFO = 1
  373:                   IF( WANTS )
  374:      $               S = ZERO
  375:                   IF( WANTSP )
  376:      $               SEP = ZERO
  377:                   GO TO 40
  378:                END IF
  379:                IF( PAIR )
  380:      $            KS = KS + 1
  381:             END IF
  382:          END IF
  383:    20 CONTINUE
  384: *
  385:       IF( WANTS ) THEN
  386: *
  387: *        Solve Sylvester equation for R:
  388: *
  389: *           T11*R - R*T22 = scale*T12
  390: *
  391:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
  392:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
  393:      $                LDT, WORK, N1, SCALE, IERR )
  394: *
  395: *        Estimate the reciprocal of the condition number of the cluster
  396: *        of eigenvalues.
  397: *
  398:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
  399:          IF( RNORM.EQ.ZERO ) THEN
  400:             S = ONE
  401:          ELSE
  402:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
  403:      $          SQRT( RNORM ) )
  404:          END IF
  405:       END IF
  406: *
  407:       IF( WANTSP ) THEN
  408: *
  409: *        Estimate sep(T11,T22).
  410: *
  411:          EST = ZERO
  412:          KASE = 0
  413:    30    CONTINUE
  414:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
  415:          IF( KASE.NE.0 ) THEN
  416:             IF( KASE.EQ.1 ) THEN
  417: *
  418: *              Solve  T11*R - R*T22 = scale*X.
  419: *
  420:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
  421:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  422:      $                      IERR )
  423:             ELSE
  424: *
  425: *              Solve  T11'*R - R*T22' = scale*X.
  426: *
  427:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
  428:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  429:      $                      IERR )
  430:             END IF
  431:             GO TO 30
  432:          END IF
  433: *
  434:          SEP = SCALE / EST
  435:       END IF
  436: *
  437:    40 CONTINUE
  438: *
  439: *     Store the output eigenvalues in WR and WI.
  440: *
  441:       DO 50 K = 1, N
  442:          WR( K ) = T( K, K )
  443:          WI( K ) = ZERO
  444:    50 CONTINUE
  445:       DO 60 K = 1, N - 1
  446:          IF( T( K+1, K ).NE.ZERO ) THEN
  447:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
  448:      $                SQRT( ABS( T( K+1, K ) ) )
  449:             WI( K+1 ) = -WI( K )
  450:          END IF
  451:    60 CONTINUE
  452: *
  453:       WORK( 1 ) = LWMIN
  454:       IWORK( 1 ) = LIWMIN
  455: *
  456:       RETURN
  457: *
  458: *     End of DTRSEN
  459: *
  460:       END

CVSweb interface <joel.bertrand@systella.fr>