File:  [local] / rpl / lapack / lapack / dtrsen.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:13 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTRSEN
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTRSEN + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
   22: *                          M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          COMPQ, JOB
   26: *       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
   27: *       DOUBLE PRECISION   S, SEP
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       LOGICAL            SELECT( * )
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
   33: *      $                   WR( * )
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DTRSEN reorders the real Schur factorization of a real matrix
   43: *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
   44: *> the leading diagonal blocks of the upper quasi-triangular matrix T,
   45: *> and the leading columns of Q form an orthonormal basis of the
   46: *> corresponding right invariant subspace.
   47: *>
   48: *> Optionally the routine computes the reciprocal condition numbers of
   49: *> the cluster of eigenvalues and/or the invariant subspace.
   50: *>
   51: *> T must be in Schur canonical form (as returned by DHSEQR), that is,
   52: *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
   53: *> 2-by-2 diagonal block has its diagonal elements equal and its
   54: *> off-diagonal elements of opposite sign.
   55: *> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] JOB
   61: *> \verbatim
   62: *>          JOB is CHARACTER*1
   63: *>          Specifies whether condition numbers are required for the
   64: *>          cluster of eigenvalues (S) or the invariant subspace (SEP):
   65: *>          = 'N': none;
   66: *>          = 'E': for eigenvalues only (S);
   67: *>          = 'V': for invariant subspace only (SEP);
   68: *>          = 'B': for both eigenvalues and invariant subspace (S and
   69: *>                 SEP).
   70: *> \endverbatim
   71: *>
   72: *> \param[in] COMPQ
   73: *> \verbatim
   74: *>          COMPQ is CHARACTER*1
   75: *>          = 'V': update the matrix Q of Schur vectors;
   76: *>          = 'N': do not update Q.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] SELECT
   80: *> \verbatim
   81: *>          SELECT is LOGICAL array, dimension (N)
   82: *>          SELECT specifies the eigenvalues in the selected cluster. To
   83: *>          select a real eigenvalue w(j), SELECT(j) must be set to
   84: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
   85: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
   86: *>          either SELECT(j) or SELECT(j+1) or both must be set to
   87: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
   88: *>          either both included in the cluster or both excluded.
   89: *> \endverbatim
   90: *>
   91: *> \param[in] N
   92: *> \verbatim
   93: *>          N is INTEGER
   94: *>          The order of the matrix T. N >= 0.
   95: *> \endverbatim
   96: *>
   97: *> \param[in,out] T
   98: *> \verbatim
   99: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
  100: *>          On entry, the upper quasi-triangular matrix T, in Schur
  101: *>          canonical form.
  102: *>          On exit, T is overwritten by the reordered matrix T, again in
  103: *>          Schur canonical form, with the selected eigenvalues in the
  104: *>          leading diagonal blocks.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDT
  108: *> \verbatim
  109: *>          LDT is INTEGER
  110: *>          The leading dimension of the array T. LDT >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[in,out] Q
  114: *> \verbatim
  115: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
  116: *>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
  117: *>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
  118: *>          orthogonal transformation matrix which reorders T; the
  119: *>          leading M columns of Q form an orthonormal basis for the
  120: *>          specified invariant subspace.
  121: *>          If COMPQ = 'N', Q is not referenced.
  122: *> \endverbatim
  123: *>
  124: *> \param[in] LDQ
  125: *> \verbatim
  126: *>          LDQ is INTEGER
  127: *>          The leading dimension of the array Q.
  128: *>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
  129: *> \endverbatim
  130: *>
  131: *> \param[out] WR
  132: *> \verbatim
  133: *>          WR is DOUBLE PRECISION array, dimension (N)
  134: *> \endverbatim
  135: *> \param[out] WI
  136: *> \verbatim
  137: *>          WI is DOUBLE PRECISION array, dimension (N)
  138: *>
  139: *>          The real and imaginary parts, respectively, of the reordered
  140: *>          eigenvalues of T. The eigenvalues are stored in the same
  141: *>          order as on the diagonal of T, with WR(i) = T(i,i) and, if
  142: *>          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
  143: *>          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
  144: *>          sufficiently ill-conditioned, then its value may differ
  145: *>          significantly from its value before reordering.
  146: *> \endverbatim
  147: *>
  148: *> \param[out] M
  149: *> \verbatim
  150: *>          M is INTEGER
  151: *>          The dimension of the specified invariant subspace.
  152: *>          0 < = M <= N.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] S
  156: *> \verbatim
  157: *>          S is DOUBLE PRECISION
  158: *>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
  159: *>          condition number for the selected cluster of eigenvalues.
  160: *>          S cannot underestimate the true reciprocal condition number
  161: *>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
  162: *>          If JOB = 'N' or 'V', S is not referenced.
  163: *> \endverbatim
  164: *>
  165: *> \param[out] SEP
  166: *> \verbatim
  167: *>          SEP is DOUBLE PRECISION
  168: *>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
  169: *>          condition number of the specified invariant subspace. If
  170: *>          M = 0 or N, SEP = norm(T).
  171: *>          If JOB = 'N' or 'E', SEP is not referenced.
  172: *> \endverbatim
  173: *>
  174: *> \param[out] WORK
  175: *> \verbatim
  176: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  177: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  178: *> \endverbatim
  179: *>
  180: *> \param[in] LWORK
  181: *> \verbatim
  182: *>          LWORK is INTEGER
  183: *>          The dimension of the array WORK.
  184: *>          If JOB = 'N', LWORK >= max(1,N);
  185: *>          if JOB = 'E', LWORK >= max(1,M*(N-M));
  186: *>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
  187: *>
  188: *>          If LWORK = -1, then a workspace query is assumed; the routine
  189: *>          only calculates the optimal size of the WORK array, returns
  190: *>          this value as the first entry of the WORK array, and no error
  191: *>          message related to LWORK is issued by XERBLA.
  192: *> \endverbatim
  193: *>
  194: *> \param[out] IWORK
  195: *> \verbatim
  196: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  197: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  198: *> \endverbatim
  199: *>
  200: *> \param[in] LIWORK
  201: *> \verbatim
  202: *>          LIWORK is INTEGER
  203: *>          The dimension of the array IWORK.
  204: *>          If JOB = 'N' or 'E', LIWORK >= 1;
  205: *>          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
  206: *>
  207: *>          If LIWORK = -1, then a workspace query is assumed; the
  208: *>          routine only calculates the optimal size of the IWORK array,
  209: *>          returns this value as the first entry of the IWORK array, and
  210: *>          no error message related to LIWORK is issued by XERBLA.
  211: *> \endverbatim
  212: *>
  213: *> \param[out] INFO
  214: *> \verbatim
  215: *>          INFO is INTEGER
  216: *>          = 0: successful exit
  217: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  218: *>          = 1: reordering of T failed because some eigenvalues are too
  219: *>               close to separate (the problem is very ill-conditioned);
  220: *>               T may have been partially reordered, and WR and WI
  221: *>               contain the eigenvalues in the same order as in T; S and
  222: *>               SEP (if requested) are set to zero.
  223: *> \endverbatim
  224: *
  225: *  Authors:
  226: *  ========
  227: *
  228: *> \author Univ. of Tennessee
  229: *> \author Univ. of California Berkeley
  230: *> \author Univ. of Colorado Denver
  231: *> \author NAG Ltd.
  232: *
  233: *> \ingroup doubleOTHERcomputational
  234: *
  235: *> \par Further Details:
  236: *  =====================
  237: *>
  238: *> \verbatim
  239: *>
  240: *>  DTRSEN first collects the selected eigenvalues by computing an
  241: *>  orthogonal transformation Z to move them to the top left corner of T.
  242: *>  In other words, the selected eigenvalues are the eigenvalues of T11
  243: *>  in:
  244: *>
  245: *>          Z**T * T * Z = ( T11 T12 ) n1
  246: *>                         (  0  T22 ) n2
  247: *>                            n1  n2
  248: *>
  249: *>  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
  250: *>  of Z span the specified invariant subspace of T.
  251: *>
  252: *>  If T has been obtained from the real Schur factorization of a matrix
  253: *>  A = Q*T*Q**T, then the reordered real Schur factorization of A is given
  254: *>  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
  255: *>  the corresponding invariant subspace of A.
  256: *>
  257: *>  The reciprocal condition number of the average of the eigenvalues of
  258: *>  T11 may be returned in S. S lies between 0 (very badly conditioned)
  259: *>  and 1 (very well conditioned). It is computed as follows. First we
  260: *>  compute R so that
  261: *>
  262: *>                         P = ( I  R ) n1
  263: *>                             ( 0  0 ) n2
  264: *>                               n1 n2
  265: *>
  266: *>  is the projector on the invariant subspace associated with T11.
  267: *>  R is the solution of the Sylvester equation:
  268: *>
  269: *>                        T11*R - R*T22 = T12.
  270: *>
  271: *>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
  272: *>  the two-norm of M. Then S is computed as the lower bound
  273: *>
  274: *>                      (1 + F-norm(R)**2)**(-1/2)
  275: *>
  276: *>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
  277: *>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
  278: *>  sqrt(N).
  279: *>
  280: *>  An approximate error bound for the computed average of the
  281: *>  eigenvalues of T11 is
  282: *>
  283: *>                         EPS * norm(T) / S
  284: *>
  285: *>  where EPS is the machine precision.
  286: *>
  287: *>  The reciprocal condition number of the right invariant subspace
  288: *>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
  289: *>  SEP is defined as the separation of T11 and T22:
  290: *>
  291: *>                     sep( T11, T22 ) = sigma-min( C )
  292: *>
  293: *>  where sigma-min(C) is the smallest singular value of the
  294: *>  n1*n2-by-n1*n2 matrix
  295: *>
  296: *>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
  297: *>
  298: *>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
  299: *>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
  300: *>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
  301: *>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
  302: *>
  303: *>  When SEP is small, small changes in T can cause large changes in
  304: *>  the invariant subspace. An approximate bound on the maximum angular
  305: *>  error in the computed right invariant subspace is
  306: *>
  307: *>                      EPS * norm(T) / SEP
  308: *> \endverbatim
  309: *>
  310: *  =====================================================================
  311:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
  312:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
  313: *
  314: *  -- LAPACK computational routine --
  315: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  316: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  317: *
  318: *     .. Scalar Arguments ..
  319:       CHARACTER          COMPQ, JOB
  320:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
  321:       DOUBLE PRECISION   S, SEP
  322: *     ..
  323: *     .. Array Arguments ..
  324:       LOGICAL            SELECT( * )
  325:       INTEGER            IWORK( * )
  326:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
  327:      $                   WR( * )
  328: *     ..
  329: *
  330: *  =====================================================================
  331: *
  332: *     .. Parameters ..
  333:       DOUBLE PRECISION   ZERO, ONE
  334:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  335: *     ..
  336: *     .. Local Scalars ..
  337:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
  338:      $                   WANTSP
  339:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
  340:      $                   NN
  341:       DOUBLE PRECISION   EST, RNORM, SCALE
  342: *     ..
  343: *     .. Local Arrays ..
  344:       INTEGER            ISAVE( 3 )
  345: *     ..
  346: *     .. External Functions ..
  347:       LOGICAL            LSAME
  348:       DOUBLE PRECISION   DLANGE
  349:       EXTERNAL           LSAME, DLANGE
  350: *     ..
  351: *     .. External Subroutines ..
  352:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
  353: *     ..
  354: *     .. Intrinsic Functions ..
  355:       INTRINSIC          ABS, MAX, SQRT
  356: *     ..
  357: *     .. Executable Statements ..
  358: *
  359: *     Decode and test the input parameters
  360: *
  361:       WANTBH = LSAME( JOB, 'B' )
  362:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  363:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
  364:       WANTQ = LSAME( COMPQ, 'V' )
  365: *
  366:       INFO = 0
  367:       LQUERY = ( LWORK.EQ.-1 )
  368:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
  369:      $     THEN
  370:          INFO = -1
  371:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
  372:          INFO = -2
  373:       ELSE IF( N.LT.0 ) THEN
  374:          INFO = -4
  375:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
  376:          INFO = -6
  377:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
  378:          INFO = -8
  379:       ELSE
  380: *
  381: *        Set M to the dimension of the specified invariant subspace,
  382: *        and test LWORK and LIWORK.
  383: *
  384:          M = 0
  385:          PAIR = .FALSE.
  386:          DO 10 K = 1, N
  387:             IF( PAIR ) THEN
  388:                PAIR = .FALSE.
  389:             ELSE
  390:                IF( K.LT.N ) THEN
  391:                   IF( T( K+1, K ).EQ.ZERO ) THEN
  392:                      IF( SELECT( K ) )
  393:      $                  M = M + 1
  394:                   ELSE
  395:                      PAIR = .TRUE.
  396:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
  397:      $                  M = M + 2
  398:                   END IF
  399:                ELSE
  400:                   IF( SELECT( N ) )
  401:      $               M = M + 1
  402:                END IF
  403:             END IF
  404:    10    CONTINUE
  405: *
  406:          N1 = M
  407:          N2 = N - M
  408:          NN = N1*N2
  409: *
  410:          IF( WANTSP ) THEN
  411:             LWMIN = MAX( 1, 2*NN )
  412:             LIWMIN = MAX( 1, NN )
  413:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
  414:             LWMIN = MAX( 1, N )
  415:             LIWMIN = 1
  416:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
  417:             LWMIN = MAX( 1, NN )
  418:             LIWMIN = 1
  419:          END IF
  420: *
  421:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  422:             INFO = -15
  423:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
  424:             INFO = -17
  425:          END IF
  426:       END IF
  427: *
  428:       IF( INFO.EQ.0 ) THEN
  429:          WORK( 1 ) = LWMIN
  430:          IWORK( 1 ) = LIWMIN
  431:       END IF
  432: *
  433:       IF( INFO.NE.0 ) THEN
  434:          CALL XERBLA( 'DTRSEN', -INFO )
  435:          RETURN
  436:       ELSE IF( LQUERY ) THEN
  437:          RETURN
  438:       END IF
  439: *
  440: *     Quick return if possible.
  441: *
  442:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
  443:          IF( WANTS )
  444:      $      S = ONE
  445:          IF( WANTSP )
  446:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
  447:          GO TO 40
  448:       END IF
  449: *
  450: *     Collect the selected blocks at the top-left corner of T.
  451: *
  452:       KS = 0
  453:       PAIR = .FALSE.
  454:       DO 20 K = 1, N
  455:          IF( PAIR ) THEN
  456:             PAIR = .FALSE.
  457:          ELSE
  458:             SWAP = SELECT( K )
  459:             IF( K.LT.N ) THEN
  460:                IF( T( K+1, K ).NE.ZERO ) THEN
  461:                   PAIR = .TRUE.
  462:                   SWAP = SWAP .OR. SELECT( K+1 )
  463:                END IF
  464:             END IF
  465:             IF( SWAP ) THEN
  466:                KS = KS + 1
  467: *
  468: *              Swap the K-th block to position KS.
  469: *
  470:                IERR = 0
  471:                KK = K
  472:                IF( K.NE.KS )
  473:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
  474:      $                         IERR )
  475:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
  476: *
  477: *                 Blocks too close to swap: exit.
  478: *
  479:                   INFO = 1
  480:                   IF( WANTS )
  481:      $               S = ZERO
  482:                   IF( WANTSP )
  483:      $               SEP = ZERO
  484:                   GO TO 40
  485:                END IF
  486:                IF( PAIR )
  487:      $            KS = KS + 1
  488:             END IF
  489:          END IF
  490:    20 CONTINUE
  491: *
  492:       IF( WANTS ) THEN
  493: *
  494: *        Solve Sylvester equation for R:
  495: *
  496: *           T11*R - R*T22 = scale*T12
  497: *
  498:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
  499:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
  500:      $                LDT, WORK, N1, SCALE, IERR )
  501: *
  502: *        Estimate the reciprocal of the condition number of the cluster
  503: *        of eigenvalues.
  504: *
  505:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
  506:          IF( RNORM.EQ.ZERO ) THEN
  507:             S = ONE
  508:          ELSE
  509:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
  510:      $          SQRT( RNORM ) )
  511:          END IF
  512:       END IF
  513: *
  514:       IF( WANTSP ) THEN
  515: *
  516: *        Estimate sep(T11,T22).
  517: *
  518:          EST = ZERO
  519:          KASE = 0
  520:    30    CONTINUE
  521:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
  522:          IF( KASE.NE.0 ) THEN
  523:             IF( KASE.EQ.1 ) THEN
  524: *
  525: *              Solve  T11*R - R*T22 = scale*X.
  526: *
  527:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
  528:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  529:      $                      IERR )
  530:             ELSE
  531: *
  532: *              Solve T11**T*R - R*T22**T = scale*X.
  533: *
  534:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
  535:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
  536:      $                      IERR )
  537:             END IF
  538:             GO TO 30
  539:          END IF
  540: *
  541:          SEP = SCALE / EST
  542:       END IF
  543: *
  544:    40 CONTINUE
  545: *
  546: *     Store the output eigenvalues in WR and WI.
  547: *
  548:       DO 50 K = 1, N
  549:          WR( K ) = T( K, K )
  550:          WI( K ) = ZERO
  551:    50 CONTINUE
  552:       DO 60 K = 1, N - 1
  553:          IF( T( K+1, K ).NE.ZERO ) THEN
  554:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
  555:      $                SQRT( ABS( T( K+1, K ) ) )
  556:             WI( K+1 ) = -WI( K )
  557:          END IF
  558:    60 CONTINUE
  559: *
  560:       WORK( 1 ) = LWMIN
  561:       IWORK( 1 ) = LIWMIN
  562: *
  563:       RETURN
  564: *
  565: *     End of DTRSEN
  566: *
  567:       END

CVSweb interface <joel.bertrand@systella.fr>