Annotation of rpl/lapack/lapack/dtrsen.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DTRSEN
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DTRSEN + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
        !            22: *                          M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          COMPQ, JOB
        !            26: *       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
        !            27: *       DOUBLE PRECISION   S, SEP
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       LOGICAL            SELECT( * )
        !            31: *       INTEGER            IWORK( * )
        !            32: *       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
        !            33: *      $                   WR( * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DTRSEN reorders the real Schur factorization of a real matrix
        !            43: *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
        !            44: *> the leading diagonal blocks of the upper quasi-triangular matrix T,
        !            45: *> and the leading columns of Q form an orthonormal basis of the
        !            46: *> corresponding right invariant subspace.
        !            47: *>
        !            48: *> Optionally the routine computes the reciprocal condition numbers of
        !            49: *> the cluster of eigenvalues and/or the invariant subspace.
        !            50: *>
        !            51: *> T must be in Schur canonical form (as returned by DHSEQR), that is,
        !            52: *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
        !            53: *> 2-by-2 diagonal block has its diagonal elemnts equal and its
        !            54: *> off-diagonal elements of opposite sign.
        !            55: *> \endverbatim
        !            56: *
        !            57: *  Arguments:
        !            58: *  ==========
        !            59: *
        !            60: *> \param[in] JOB
        !            61: *> \verbatim
        !            62: *>          JOB is CHARACTER*1
        !            63: *>          Specifies whether condition numbers are required for the
        !            64: *>          cluster of eigenvalues (S) or the invariant subspace (SEP):
        !            65: *>          = 'N': none;
        !            66: *>          = 'E': for eigenvalues only (S);
        !            67: *>          = 'V': for invariant subspace only (SEP);
        !            68: *>          = 'B': for both eigenvalues and invariant subspace (S and
        !            69: *>                 SEP).
        !            70: *> \endverbatim
        !            71: *>
        !            72: *> \param[in] COMPQ
        !            73: *> \verbatim
        !            74: *>          COMPQ is CHARACTER*1
        !            75: *>          = 'V': update the matrix Q of Schur vectors;
        !            76: *>          = 'N': do not update Q.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] SELECT
        !            80: *> \verbatim
        !            81: *>          SELECT is LOGICAL array, dimension (N)
        !            82: *>          SELECT specifies the eigenvalues in the selected cluster. To
        !            83: *>          select a real eigenvalue w(j), SELECT(j) must be set to
        !            84: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
        !            85: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
        !            86: *>          either SELECT(j) or SELECT(j+1) or both must be set to
        !            87: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
        !            88: *>          either both included in the cluster or both excluded.
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] N
        !            92: *> \verbatim
        !            93: *>          N is INTEGER
        !            94: *>          The order of the matrix T. N >= 0.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in,out] T
        !            98: *> \verbatim
        !            99: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
        !           100: *>          On entry, the upper quasi-triangular matrix T, in Schur
        !           101: *>          canonical form.
        !           102: *>          On exit, T is overwritten by the reordered matrix T, again in
        !           103: *>          Schur canonical form, with the selected eigenvalues in the
        !           104: *>          leading diagonal blocks.
        !           105: *> \endverbatim
        !           106: *>
        !           107: *> \param[in] LDT
        !           108: *> \verbatim
        !           109: *>          LDT is INTEGER
        !           110: *>          The leading dimension of the array T. LDT >= max(1,N).
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in,out] Q
        !           114: *> \verbatim
        !           115: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
        !           116: *>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
        !           117: *>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
        !           118: *>          orthogonal transformation matrix which reorders T; the
        !           119: *>          leading M columns of Q form an orthonormal basis for the
        !           120: *>          specified invariant subspace.
        !           121: *>          If COMPQ = 'N', Q is not referenced.
        !           122: *> \endverbatim
        !           123: *>
        !           124: *> \param[in] LDQ
        !           125: *> \verbatim
        !           126: *>          LDQ is INTEGER
        !           127: *>          The leading dimension of the array Q.
        !           128: *>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
        !           129: *> \endverbatim
        !           130: *>
        !           131: *> \param[out] WR
        !           132: *> \verbatim
        !           133: *>          WR is DOUBLE PRECISION array, dimension (N)
        !           134: *> \endverbatim
        !           135: *> \param[out] WI
        !           136: *> \verbatim
        !           137: *>          WI is DOUBLE PRECISION array, dimension (N)
        !           138: *>
        !           139: *>          The real and imaginary parts, respectively, of the reordered
        !           140: *>          eigenvalues of T. The eigenvalues are stored in the same
        !           141: *>          order as on the diagonal of T, with WR(i) = T(i,i) and, if
        !           142: *>          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
        !           143: *>          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
        !           144: *>          sufficiently ill-conditioned, then its value may differ
        !           145: *>          significantly from its value before reordering.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[out] M
        !           149: *> \verbatim
        !           150: *>          M is INTEGER
        !           151: *>          The dimension of the specified invariant subspace.
        !           152: *>          0 < = M <= N.
        !           153: *> \endverbatim
        !           154: *>
        !           155: *> \param[out] S
        !           156: *> \verbatim
        !           157: *>          S is DOUBLE PRECISION
        !           158: *>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
        !           159: *>          condition number for the selected cluster of eigenvalues.
        !           160: *>          S cannot underestimate the true reciprocal condition number
        !           161: *>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
        !           162: *>          If JOB = 'N' or 'V', S is not referenced.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[out] SEP
        !           166: *> \verbatim
        !           167: *>          SEP is DOUBLE PRECISION
        !           168: *>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
        !           169: *>          condition number of the specified invariant subspace. If
        !           170: *>          M = 0 or N, SEP = norm(T).
        !           171: *>          If JOB = 'N' or 'E', SEP is not referenced.
        !           172: *> \endverbatim
        !           173: *>
        !           174: *> \param[out] WORK
        !           175: *> \verbatim
        !           176: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           177: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           178: *> \endverbatim
        !           179: *>
        !           180: *> \param[in] LWORK
        !           181: *> \verbatim
        !           182: *>          LWORK is INTEGER
        !           183: *>          The dimension of the array WORK.
        !           184: *>          If JOB = 'N', LWORK >= max(1,N);
        !           185: *>          if JOB = 'E', LWORK >= max(1,M*(N-M));
        !           186: *>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
        !           187: *>
        !           188: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           189: *>          only calculates the optimal size of the WORK array, returns
        !           190: *>          this value as the first entry of the WORK array, and no error
        !           191: *>          message related to LWORK is issued by XERBLA.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] IWORK
        !           195: *> \verbatim
        !           196: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           197: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LIWORK
        !           201: *> \verbatim
        !           202: *>          LIWORK is INTEGER
        !           203: *>          The dimension of the array IWORK.
        !           204: *>          If JOB = 'N' or 'E', LIWORK >= 1;
        !           205: *>          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
        !           206: *>
        !           207: *>          If LIWORK = -1, then a workspace query is assumed; the
        !           208: *>          routine only calculates the optimal size of the IWORK array,
        !           209: *>          returns this value as the first entry of the IWORK array, and
        !           210: *>          no error message related to LIWORK is issued by XERBLA.
        !           211: *> \endverbatim
        !           212: *>
        !           213: *> \param[out] INFO
        !           214: *> \verbatim
        !           215: *>          INFO is INTEGER
        !           216: *>          = 0: successful exit
        !           217: *>          < 0: if INFO = -i, the i-th argument had an illegal value
        !           218: *>          = 1: reordering of T failed because some eigenvalues are too
        !           219: *>               close to separate (the problem is very ill-conditioned);
        !           220: *>               T may have been partially reordered, and WR and WI
        !           221: *>               contain the eigenvalues in the same order as in T; S and
        !           222: *>               SEP (if requested) are set to zero.
        !           223: *> \endverbatim
        !           224: *
        !           225: *  Authors:
        !           226: *  ========
        !           227: *
        !           228: *> \author Univ. of Tennessee 
        !           229: *> \author Univ. of California Berkeley 
        !           230: *> \author Univ. of Colorado Denver 
        !           231: *> \author NAG Ltd. 
        !           232: *
        !           233: *> \date November 2011
        !           234: *
        !           235: *> \ingroup doubleOTHERcomputational
        !           236: *
        !           237: *> \par Further Details:
        !           238: *  =====================
        !           239: *>
        !           240: *> \verbatim
        !           241: *>
        !           242: *>  DTRSEN first collects the selected eigenvalues by computing an
        !           243: *>  orthogonal transformation Z to move them to the top left corner of T.
        !           244: *>  In other words, the selected eigenvalues are the eigenvalues of T11
        !           245: *>  in:
        !           246: *>
        !           247: *>          Z**T * T * Z = ( T11 T12 ) n1
        !           248: *>                         (  0  T22 ) n2
        !           249: *>                            n1  n2
        !           250: *>
        !           251: *>  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
        !           252: *>  of Z span the specified invariant subspace of T.
        !           253: *>
        !           254: *>  If T has been obtained from the real Schur factorization of a matrix
        !           255: *>  A = Q*T*Q**T, then the reordered real Schur factorization of A is given
        !           256: *>  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
        !           257: *>  the corresponding invariant subspace of A.
        !           258: *>
        !           259: *>  The reciprocal condition number of the average of the eigenvalues of
        !           260: *>  T11 may be returned in S. S lies between 0 (very badly conditioned)
        !           261: *>  and 1 (very well conditioned). It is computed as follows. First we
        !           262: *>  compute R so that
        !           263: *>
        !           264: *>                         P = ( I  R ) n1
        !           265: *>                             ( 0  0 ) n2
        !           266: *>                               n1 n2
        !           267: *>
        !           268: *>  is the projector on the invariant subspace associated with T11.
        !           269: *>  R is the solution of the Sylvester equation:
        !           270: *>
        !           271: *>                        T11*R - R*T22 = T12.
        !           272: *>
        !           273: *>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
        !           274: *>  the two-norm of M. Then S is computed as the lower bound
        !           275: *>
        !           276: *>                      (1 + F-norm(R)**2)**(-1/2)
        !           277: *>
        !           278: *>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
        !           279: *>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
        !           280: *>  sqrt(N).
        !           281: *>
        !           282: *>  An approximate error bound for the computed average of the
        !           283: *>  eigenvalues of T11 is
        !           284: *>
        !           285: *>                         EPS * norm(T) / S
        !           286: *>
        !           287: *>  where EPS is the machine precision.
        !           288: *>
        !           289: *>  The reciprocal condition number of the right invariant subspace
        !           290: *>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
        !           291: *>  SEP is defined as the separation of T11 and T22:
        !           292: *>
        !           293: *>                     sep( T11, T22 ) = sigma-min( C )
        !           294: *>
        !           295: *>  where sigma-min(C) is the smallest singular value of the
        !           296: *>  n1*n2-by-n1*n2 matrix
        !           297: *>
        !           298: *>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
        !           299: *>
        !           300: *>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
        !           301: *>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
        !           302: *>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
        !           303: *>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
        !           304: *>
        !           305: *>  When SEP is small, small changes in T can cause large changes in
        !           306: *>  the invariant subspace. An approximate bound on the maximum angular
        !           307: *>  error in the computed right invariant subspace is
        !           308: *>
        !           309: *>                      EPS * norm(T) / SEP
        !           310: *> \endverbatim
        !           311: *>
        !           312: *  =====================================================================
1.1       bertrand  313:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
                    314:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
                    315: *
1.9     ! bertrand  316: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  317: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    318: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  319: *     November 2011
1.1       bertrand  320: *
                    321: *     .. Scalar Arguments ..
                    322:       CHARACTER          COMPQ, JOB
                    323:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
                    324:       DOUBLE PRECISION   S, SEP
                    325: *     ..
                    326: *     .. Array Arguments ..
                    327:       LOGICAL            SELECT( * )
                    328:       INTEGER            IWORK( * )
                    329:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
                    330:      $                   WR( * )
                    331: *     ..
                    332: *
                    333: *  =====================================================================
                    334: *
                    335: *     .. Parameters ..
                    336:       DOUBLE PRECISION   ZERO, ONE
                    337:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    338: *     ..
                    339: *     .. Local Scalars ..
                    340:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
                    341:      $                   WANTSP
                    342:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
                    343:      $                   NN
                    344:       DOUBLE PRECISION   EST, RNORM, SCALE
                    345: *     ..
                    346: *     .. Local Arrays ..
                    347:       INTEGER            ISAVE( 3 )
                    348: *     ..
                    349: *     .. External Functions ..
                    350:       LOGICAL            LSAME
                    351:       DOUBLE PRECISION   DLANGE
                    352:       EXTERNAL           LSAME, DLANGE
                    353: *     ..
                    354: *     .. External Subroutines ..
                    355:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
                    356: *     ..
                    357: *     .. Intrinsic Functions ..
                    358:       INTRINSIC          ABS, MAX, SQRT
                    359: *     ..
                    360: *     .. Executable Statements ..
                    361: *
                    362: *     Decode and test the input parameters
                    363: *
                    364:       WANTBH = LSAME( JOB, 'B' )
                    365:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    366:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    367:       WANTQ = LSAME( COMPQ, 'V' )
                    368: *
                    369:       INFO = 0
                    370:       LQUERY = ( LWORK.EQ.-1 )
                    371:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
                    372:      $     THEN
                    373:          INFO = -1
                    374:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
                    375:          INFO = -2
                    376:       ELSE IF( N.LT.0 ) THEN
                    377:          INFO = -4
                    378:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    379:          INFO = -6
                    380:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    381:          INFO = -8
                    382:       ELSE
                    383: *
                    384: *        Set M to the dimension of the specified invariant subspace,
                    385: *        and test LWORK and LIWORK.
                    386: *
                    387:          M = 0
                    388:          PAIR = .FALSE.
                    389:          DO 10 K = 1, N
                    390:             IF( PAIR ) THEN
                    391:                PAIR = .FALSE.
                    392:             ELSE
                    393:                IF( K.LT.N ) THEN
                    394:                   IF( T( K+1, K ).EQ.ZERO ) THEN
                    395:                      IF( SELECT( K ) )
                    396:      $                  M = M + 1
                    397:                   ELSE
                    398:                      PAIR = .TRUE.
                    399:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    400:      $                  M = M + 2
                    401:                   END IF
                    402:                ELSE
                    403:                   IF( SELECT( N ) )
                    404:      $               M = M + 1
                    405:                END IF
                    406:             END IF
                    407:    10    CONTINUE
                    408: *
                    409:          N1 = M
                    410:          N2 = N - M
                    411:          NN = N1*N2
                    412: *
                    413:          IF( WANTSP ) THEN
                    414:             LWMIN = MAX( 1, 2*NN )
                    415:             LIWMIN = MAX( 1, NN )
                    416:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
                    417:             LWMIN = MAX( 1, N )
                    418:             LIWMIN = 1
                    419:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
                    420:             LWMIN = MAX( 1, NN )
                    421:             LIWMIN = 1
                    422:          END IF
                    423: *
                    424:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    425:             INFO = -15
                    426:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    427:             INFO = -17
                    428:          END IF
                    429:       END IF
                    430: *
                    431:       IF( INFO.EQ.0 ) THEN
                    432:          WORK( 1 ) = LWMIN
                    433:          IWORK( 1 ) = LIWMIN
                    434:       END IF
                    435: *
                    436:       IF( INFO.NE.0 ) THEN
                    437:          CALL XERBLA( 'DTRSEN', -INFO )
                    438:          RETURN
                    439:       ELSE IF( LQUERY ) THEN
                    440:          RETURN
                    441:       END IF
                    442: *
                    443: *     Quick return if possible.
                    444: *
                    445:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    446:          IF( WANTS )
                    447:      $      S = ONE
                    448:          IF( WANTSP )
                    449:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
                    450:          GO TO 40
                    451:       END IF
                    452: *
                    453: *     Collect the selected blocks at the top-left corner of T.
                    454: *
                    455:       KS = 0
                    456:       PAIR = .FALSE.
                    457:       DO 20 K = 1, N
                    458:          IF( PAIR ) THEN
                    459:             PAIR = .FALSE.
                    460:          ELSE
                    461:             SWAP = SELECT( K )
                    462:             IF( K.LT.N ) THEN
                    463:                IF( T( K+1, K ).NE.ZERO ) THEN
                    464:                   PAIR = .TRUE.
                    465:                   SWAP = SWAP .OR. SELECT( K+1 )
                    466:                END IF
                    467:             END IF
                    468:             IF( SWAP ) THEN
                    469:                KS = KS + 1
                    470: *
                    471: *              Swap the K-th block to position KS.
                    472: *
                    473:                IERR = 0
                    474:                KK = K
                    475:                IF( K.NE.KS )
                    476:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
                    477:      $                         IERR )
                    478:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
                    479: *
                    480: *                 Blocks too close to swap: exit.
                    481: *
                    482:                   INFO = 1
                    483:                   IF( WANTS )
                    484:      $               S = ZERO
                    485:                   IF( WANTSP )
                    486:      $               SEP = ZERO
                    487:                   GO TO 40
                    488:                END IF
                    489:                IF( PAIR )
                    490:      $            KS = KS + 1
                    491:             END IF
                    492:          END IF
                    493:    20 CONTINUE
                    494: *
                    495:       IF( WANTS ) THEN
                    496: *
                    497: *        Solve Sylvester equation for R:
                    498: *
                    499: *           T11*R - R*T22 = scale*T12
                    500: *
                    501:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
                    502:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
                    503:      $                LDT, WORK, N1, SCALE, IERR )
                    504: *
                    505: *        Estimate the reciprocal of the condition number of the cluster
                    506: *        of eigenvalues.
                    507: *
                    508:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
                    509:          IF( RNORM.EQ.ZERO ) THEN
                    510:             S = ONE
                    511:          ELSE
                    512:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
                    513:      $          SQRT( RNORM ) )
                    514:          END IF
                    515:       END IF
                    516: *
                    517:       IF( WANTSP ) THEN
                    518: *
                    519: *        Estimate sep(T11,T22).
                    520: *
                    521:          EST = ZERO
                    522:          KASE = 0
                    523:    30    CONTINUE
                    524:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
                    525:          IF( KASE.NE.0 ) THEN
                    526:             IF( KASE.EQ.1 ) THEN
                    527: *
                    528: *              Solve  T11*R - R*T22 = scale*X.
                    529: *
                    530:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
                    531:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    532:      $                      IERR )
                    533:             ELSE
                    534: *
1.8       bertrand  535: *              Solve T11**T*R - R*T22**T = scale*X.
1.1       bertrand  536: *
                    537:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
                    538:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    539:      $                      IERR )
                    540:             END IF
                    541:             GO TO 30
                    542:          END IF
                    543: *
                    544:          SEP = SCALE / EST
                    545:       END IF
                    546: *
                    547:    40 CONTINUE
                    548: *
                    549: *     Store the output eigenvalues in WR and WI.
                    550: *
                    551:       DO 50 K = 1, N
                    552:          WR( K ) = T( K, K )
                    553:          WI( K ) = ZERO
                    554:    50 CONTINUE
                    555:       DO 60 K = 1, N - 1
                    556:          IF( T( K+1, K ).NE.ZERO ) THEN
                    557:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
                    558:      $                SQRT( ABS( T( K+1, K ) ) )
                    559:             WI( K+1 ) = -WI( K )
                    560:          END IF
                    561:    60 CONTINUE
                    562: *
                    563:       WORK( 1 ) = LWMIN
                    564:       IWORK( 1 ) = LIWMIN
                    565: *
                    566:       RETURN
                    567: *
                    568: *     End of DTRSEN
                    569: *
                    570:       END

CVSweb interface <joel.bertrand@systella.fr>