Annotation of rpl/lapack/lapack/dtrsen.f, revision 1.3

1.1       bertrand    1:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
                      2:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
                      3: *
                      4: *  -- LAPACK routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          COMPQ, JOB
                     11:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
                     12:       DOUBLE PRECISION   S, SEP
                     13: *     ..
                     14: *     .. Array Arguments ..
                     15:       LOGICAL            SELECT( * )
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
                     18:      $                   WR( * )
                     19: *     ..
                     20: *
                     21: *  Purpose
                     22: *  =======
                     23: *
                     24: *  DTRSEN reorders the real Schur factorization of a real matrix
                     25: *  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
                     26: *  the leading diagonal blocks of the upper quasi-triangular matrix T,
                     27: *  and the leading columns of Q form an orthonormal basis of the
                     28: *  corresponding right invariant subspace.
                     29: *
                     30: *  Optionally the routine computes the reciprocal condition numbers of
                     31: *  the cluster of eigenvalues and/or the invariant subspace.
                     32: *
                     33: *  T must be in Schur canonical form (as returned by DHSEQR), that is,
                     34: *  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
                     35: *  2-by-2 diagonal block has its diagonal elemnts equal and its
                     36: *  off-diagonal elements of opposite sign.
                     37: *
                     38: *  Arguments
                     39: *  =========
                     40: *
                     41: *  JOB     (input) CHARACTER*1
                     42: *          Specifies whether condition numbers are required for the
                     43: *          cluster of eigenvalues (S) or the invariant subspace (SEP):
                     44: *          = 'N': none;
                     45: *          = 'E': for eigenvalues only (S);
                     46: *          = 'V': for invariant subspace only (SEP);
                     47: *          = 'B': for both eigenvalues and invariant subspace (S and
                     48: *                 SEP).
                     49: *
                     50: *  COMPQ   (input) CHARACTER*1
                     51: *          = 'V': update the matrix Q of Schur vectors;
                     52: *          = 'N': do not update Q.
                     53: *
                     54: *  SELECT  (input) LOGICAL array, dimension (N)
                     55: *          SELECT specifies the eigenvalues in the selected cluster. To
                     56: *          select a real eigenvalue w(j), SELECT(j) must be set to
                     57: *          .TRUE.. To select a complex conjugate pair of eigenvalues
                     58: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
                     59: *          either SELECT(j) or SELECT(j+1) or both must be set to
                     60: *          .TRUE.; a complex conjugate pair of eigenvalues must be
                     61: *          either both included in the cluster or both excluded.
                     62: *
                     63: *  N       (input) INTEGER
                     64: *          The order of the matrix T. N >= 0.
                     65: *
                     66: *  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
                     67: *          On entry, the upper quasi-triangular matrix T, in Schur
                     68: *          canonical form.
                     69: *          On exit, T is overwritten by the reordered matrix T, again in
                     70: *          Schur canonical form, with the selected eigenvalues in the
                     71: *          leading diagonal blocks.
                     72: *
                     73: *  LDT     (input) INTEGER
                     74: *          The leading dimension of the array T. LDT >= max(1,N).
                     75: *
                     76: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
                     77: *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
                     78: *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
                     79: *          orthogonal transformation matrix which reorders T; the
                     80: *          leading M columns of Q form an orthonormal basis for the
                     81: *          specified invariant subspace.
                     82: *          If COMPQ = 'N', Q is not referenced.
                     83: *
                     84: *  LDQ     (input) INTEGER
                     85: *          The leading dimension of the array Q.
                     86: *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
                     87: *
                     88: *  WR      (output) DOUBLE PRECISION array, dimension (N)
                     89: *  WI      (output) DOUBLE PRECISION array, dimension (N)
                     90: *          The real and imaginary parts, respectively, of the reordered
                     91: *          eigenvalues of T. The eigenvalues are stored in the same
                     92: *          order as on the diagonal of T, with WR(i) = T(i,i) and, if
                     93: *          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
                     94: *          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
                     95: *          sufficiently ill-conditioned, then its value may differ
                     96: *          significantly from its value before reordering.
                     97: *
                     98: *  M       (output) INTEGER
                     99: *          The dimension of the specified invariant subspace.
                    100: *          0 < = M <= N.
                    101: *
                    102: *  S       (output) DOUBLE PRECISION
                    103: *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
                    104: *          condition number for the selected cluster of eigenvalues.
                    105: *          S cannot underestimate the true reciprocal condition number
                    106: *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
                    107: *          If JOB = 'N' or 'V', S is not referenced.
                    108: *
                    109: *  SEP     (output) DOUBLE PRECISION
                    110: *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
                    111: *          condition number of the specified invariant subspace. If
                    112: *          M = 0 or N, SEP = norm(T).
                    113: *          If JOB = 'N' or 'E', SEP is not referenced.
                    114: *
                    115: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    117: *
                    118: *  LWORK   (input) INTEGER
                    119: *          The dimension of the array WORK.
                    120: *          If JOB = 'N', LWORK >= max(1,N);
                    121: *          if JOB = 'E', LWORK >= max(1,M*(N-M));
                    122: *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
                    123: *
                    124: *          If LWORK = -1, then a workspace query is assumed; the routine
                    125: *          only calculates the optimal size of the WORK array, returns
                    126: *          this value as the first entry of the WORK array, and no error
                    127: *          message related to LWORK is issued by XERBLA.
                    128: *
                    129: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
                    130: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    131: *
                    132: *  LIWORK  (input) INTEGER
                    133: *          The dimension of the array IWORK.
                    134: *          If JOB = 'N' or 'E', LIWORK >= 1;
                    135: *          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
                    136: *
                    137: *          If LIWORK = -1, then a workspace query is assumed; the
                    138: *          routine only calculates the optimal size of the IWORK array,
                    139: *          returns this value as the first entry of the IWORK array, and
                    140: *          no error message related to LIWORK is issued by XERBLA.
                    141: *
                    142: *  INFO    (output) INTEGER
                    143: *          = 0: successful exit
                    144: *          < 0: if INFO = -i, the i-th argument had an illegal value
                    145: *          = 1: reordering of T failed because some eigenvalues are too
                    146: *               close to separate (the problem is very ill-conditioned);
                    147: *               T may have been partially reordered, and WR and WI
                    148: *               contain the eigenvalues in the same order as in T; S and
                    149: *               SEP (if requested) are set to zero.
                    150: *
                    151: *  Further Details
                    152: *  ===============
                    153: *
                    154: *  DTRSEN first collects the selected eigenvalues by computing an
                    155: *  orthogonal transformation Z to move them to the top left corner of T.
                    156: *  In other words, the selected eigenvalues are the eigenvalues of T11
                    157: *  in:
                    158: *
                    159: *                Z'*T*Z = ( T11 T12 ) n1
                    160: *                         (  0  T22 ) n2
                    161: *                            n1  n2
                    162: *
                    163: *  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
                    164: *  of Z span the specified invariant subspace of T.
                    165: *
                    166: *  If T has been obtained from the real Schur factorization of a matrix
                    167: *  A = Q*T*Q', then the reordered real Schur factorization of A is given
                    168: *  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
                    169: *  the corresponding invariant subspace of A.
                    170: *
                    171: *  The reciprocal condition number of the average of the eigenvalues of
                    172: *  T11 may be returned in S. S lies between 0 (very badly conditioned)
                    173: *  and 1 (very well conditioned). It is computed as follows. First we
                    174: *  compute R so that
                    175: *
                    176: *                         P = ( I  R ) n1
                    177: *                             ( 0  0 ) n2
                    178: *                               n1 n2
                    179: *
                    180: *  is the projector on the invariant subspace associated with T11.
                    181: *  R is the solution of the Sylvester equation:
                    182: *
                    183: *                        T11*R - R*T22 = T12.
                    184: *
                    185: *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
                    186: *  the two-norm of M. Then S is computed as the lower bound
                    187: *
                    188: *                      (1 + F-norm(R)**2)**(-1/2)
                    189: *
                    190: *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
                    191: *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
                    192: *  sqrt(N).
                    193: *
                    194: *  An approximate error bound for the computed average of the
                    195: *  eigenvalues of T11 is
                    196: *
                    197: *                         EPS * norm(T) / S
                    198: *
                    199: *  where EPS is the machine precision.
                    200: *
                    201: *  The reciprocal condition number of the right invariant subspace
                    202: *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
                    203: *  SEP is defined as the separation of T11 and T22:
                    204: *
                    205: *                     sep( T11, T22 ) = sigma-min( C )
                    206: *
                    207: *  where sigma-min(C) is the smallest singular value of the
                    208: *  n1*n2-by-n1*n2 matrix
                    209: *
                    210: *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
                    211: *
                    212: *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
                    213: *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
                    214: *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
                    215: *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
                    216: *
                    217: *  When SEP is small, small changes in T can cause large changes in
                    218: *  the invariant subspace. An approximate bound on the maximum angular
                    219: *  error in the computed right invariant subspace is
                    220: *
                    221: *                      EPS * norm(T) / SEP
                    222: *
                    223: *  =====================================================================
                    224: *
                    225: *     .. Parameters ..
                    226:       DOUBLE PRECISION   ZERO, ONE
                    227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    228: *     ..
                    229: *     .. Local Scalars ..
                    230:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
                    231:      $                   WANTSP
                    232:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
                    233:      $                   NN
                    234:       DOUBLE PRECISION   EST, RNORM, SCALE
                    235: *     ..
                    236: *     .. Local Arrays ..
                    237:       INTEGER            ISAVE( 3 )
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       LOGICAL            LSAME
                    241:       DOUBLE PRECISION   DLANGE
                    242:       EXTERNAL           LSAME, DLANGE
                    243: *     ..
                    244: *     .. External Subroutines ..
                    245:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
                    246: *     ..
                    247: *     .. Intrinsic Functions ..
                    248:       INTRINSIC          ABS, MAX, SQRT
                    249: *     ..
                    250: *     .. Executable Statements ..
                    251: *
                    252: *     Decode and test the input parameters
                    253: *
                    254:       WANTBH = LSAME( JOB, 'B' )
                    255:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    256:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    257:       WANTQ = LSAME( COMPQ, 'V' )
                    258: *
                    259:       INFO = 0
                    260:       LQUERY = ( LWORK.EQ.-1 )
                    261:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
                    262:      $     THEN
                    263:          INFO = -1
                    264:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
                    265:          INFO = -2
                    266:       ELSE IF( N.LT.0 ) THEN
                    267:          INFO = -4
                    268:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    269:          INFO = -6
                    270:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    271:          INFO = -8
                    272:       ELSE
                    273: *
                    274: *        Set M to the dimension of the specified invariant subspace,
                    275: *        and test LWORK and LIWORK.
                    276: *
                    277:          M = 0
                    278:          PAIR = .FALSE.
                    279:          DO 10 K = 1, N
                    280:             IF( PAIR ) THEN
                    281:                PAIR = .FALSE.
                    282:             ELSE
                    283:                IF( K.LT.N ) THEN
                    284:                   IF( T( K+1, K ).EQ.ZERO ) THEN
                    285:                      IF( SELECT( K ) )
                    286:      $                  M = M + 1
                    287:                   ELSE
                    288:                      PAIR = .TRUE.
                    289:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    290:      $                  M = M + 2
                    291:                   END IF
                    292:                ELSE
                    293:                   IF( SELECT( N ) )
                    294:      $               M = M + 1
                    295:                END IF
                    296:             END IF
                    297:    10    CONTINUE
                    298: *
                    299:          N1 = M
                    300:          N2 = N - M
                    301:          NN = N1*N2
                    302: *
                    303:          IF( WANTSP ) THEN
                    304:             LWMIN = MAX( 1, 2*NN )
                    305:             LIWMIN = MAX( 1, NN )
                    306:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
                    307:             LWMIN = MAX( 1, N )
                    308:             LIWMIN = 1
                    309:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
                    310:             LWMIN = MAX( 1, NN )
                    311:             LIWMIN = 1
                    312:          END IF
                    313: *
                    314:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    315:             INFO = -15
                    316:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    317:             INFO = -17
                    318:          END IF
                    319:       END IF
                    320: *
                    321:       IF( INFO.EQ.0 ) THEN
                    322:          WORK( 1 ) = LWMIN
                    323:          IWORK( 1 ) = LIWMIN
                    324:       END IF
                    325: *
                    326:       IF( INFO.NE.0 ) THEN
                    327:          CALL XERBLA( 'DTRSEN', -INFO )
                    328:          RETURN
                    329:       ELSE IF( LQUERY ) THEN
                    330:          RETURN
                    331:       END IF
                    332: *
                    333: *     Quick return if possible.
                    334: *
                    335:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    336:          IF( WANTS )
                    337:      $      S = ONE
                    338:          IF( WANTSP )
                    339:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
                    340:          GO TO 40
                    341:       END IF
                    342: *
                    343: *     Collect the selected blocks at the top-left corner of T.
                    344: *
                    345:       KS = 0
                    346:       PAIR = .FALSE.
                    347:       DO 20 K = 1, N
                    348:          IF( PAIR ) THEN
                    349:             PAIR = .FALSE.
                    350:          ELSE
                    351:             SWAP = SELECT( K )
                    352:             IF( K.LT.N ) THEN
                    353:                IF( T( K+1, K ).NE.ZERO ) THEN
                    354:                   PAIR = .TRUE.
                    355:                   SWAP = SWAP .OR. SELECT( K+1 )
                    356:                END IF
                    357:             END IF
                    358:             IF( SWAP ) THEN
                    359:                KS = KS + 1
                    360: *
                    361: *              Swap the K-th block to position KS.
                    362: *
                    363:                IERR = 0
                    364:                KK = K
                    365:                IF( K.NE.KS )
                    366:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
                    367:      $                         IERR )
                    368:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
                    369: *
                    370: *                 Blocks too close to swap: exit.
                    371: *
                    372:                   INFO = 1
                    373:                   IF( WANTS )
                    374:      $               S = ZERO
                    375:                   IF( WANTSP )
                    376:      $               SEP = ZERO
                    377:                   GO TO 40
                    378:                END IF
                    379:                IF( PAIR )
                    380:      $            KS = KS + 1
                    381:             END IF
                    382:          END IF
                    383:    20 CONTINUE
                    384: *
                    385:       IF( WANTS ) THEN
                    386: *
                    387: *        Solve Sylvester equation for R:
                    388: *
                    389: *           T11*R - R*T22 = scale*T12
                    390: *
                    391:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
                    392:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
                    393:      $                LDT, WORK, N1, SCALE, IERR )
                    394: *
                    395: *        Estimate the reciprocal of the condition number of the cluster
                    396: *        of eigenvalues.
                    397: *
                    398:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
                    399:          IF( RNORM.EQ.ZERO ) THEN
                    400:             S = ONE
                    401:          ELSE
                    402:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
                    403:      $          SQRT( RNORM ) )
                    404:          END IF
                    405:       END IF
                    406: *
                    407:       IF( WANTSP ) THEN
                    408: *
                    409: *        Estimate sep(T11,T22).
                    410: *
                    411:          EST = ZERO
                    412:          KASE = 0
                    413:    30    CONTINUE
                    414:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
                    415:          IF( KASE.NE.0 ) THEN
                    416:             IF( KASE.EQ.1 ) THEN
                    417: *
                    418: *              Solve  T11*R - R*T22 = scale*X.
                    419: *
                    420:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
                    421:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    422:      $                      IERR )
                    423:             ELSE
                    424: *
                    425: *              Solve  T11'*R - R*T22' = scale*X.
                    426: *
                    427:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
                    428:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    429:      $                      IERR )
                    430:             END IF
                    431:             GO TO 30
                    432:          END IF
                    433: *
                    434:          SEP = SCALE / EST
                    435:       END IF
                    436: *
                    437:    40 CONTINUE
                    438: *
                    439: *     Store the output eigenvalues in WR and WI.
                    440: *
                    441:       DO 50 K = 1, N
                    442:          WR( K ) = T( K, K )
                    443:          WI( K ) = ZERO
                    444:    50 CONTINUE
                    445:       DO 60 K = 1, N - 1
                    446:          IF( T( K+1, K ).NE.ZERO ) THEN
                    447:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
                    448:      $                SQRT( ABS( T( K+1, K ) ) )
                    449:             WI( K+1 ) = -WI( K )
                    450:          END IF
                    451:    60 CONTINUE
                    452: *
                    453:       WORK( 1 ) = LWMIN
                    454:       IWORK( 1 ) = LIWMIN
                    455: *
                    456:       RETURN
                    457: *
                    458: *     End of DTRSEN
                    459: *
                    460:       END

CVSweb interface <joel.bertrand@systella.fr>