Annotation of rpl/lapack/lapack/dtrsen.f, revision 1.11

1.9       bertrand    1: *> \brief \b DTRSEN
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DTRSEN + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
                     22: *                          M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          COMPQ, JOB
                     26: *       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
                     27: *       DOUBLE PRECISION   S, SEP
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
                     33: *      $                   WR( * )
                     34: *       ..
                     35: *  
                     36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DTRSEN reorders the real Schur factorization of a real matrix
                     43: *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
                     44: *> the leading diagonal blocks of the upper quasi-triangular matrix T,
                     45: *> and the leading columns of Q form an orthonormal basis of the
                     46: *> corresponding right invariant subspace.
                     47: *>
                     48: *> Optionally the routine computes the reciprocal condition numbers of
                     49: *> the cluster of eigenvalues and/or the invariant subspace.
                     50: *>
                     51: *> T must be in Schur canonical form (as returned by DHSEQR), that is,
                     52: *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
1.11    ! bertrand   53: *> 2-by-2 diagonal block has its diagonal elements equal and its
1.9       bertrand   54: *> off-diagonal elements of opposite sign.
                     55: *> \endverbatim
                     56: *
                     57: *  Arguments:
                     58: *  ==========
                     59: *
                     60: *> \param[in] JOB
                     61: *> \verbatim
                     62: *>          JOB is CHARACTER*1
                     63: *>          Specifies whether condition numbers are required for the
                     64: *>          cluster of eigenvalues (S) or the invariant subspace (SEP):
                     65: *>          = 'N': none;
                     66: *>          = 'E': for eigenvalues only (S);
                     67: *>          = 'V': for invariant subspace only (SEP);
                     68: *>          = 'B': for both eigenvalues and invariant subspace (S and
                     69: *>                 SEP).
                     70: *> \endverbatim
                     71: *>
                     72: *> \param[in] COMPQ
                     73: *> \verbatim
                     74: *>          COMPQ is CHARACTER*1
                     75: *>          = 'V': update the matrix Q of Schur vectors;
                     76: *>          = 'N': do not update Q.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] SELECT
                     80: *> \verbatim
                     81: *>          SELECT is LOGICAL array, dimension (N)
                     82: *>          SELECT specifies the eigenvalues in the selected cluster. To
                     83: *>          select a real eigenvalue w(j), SELECT(j) must be set to
                     84: *>          .TRUE.. To select a complex conjugate pair of eigenvalues
                     85: *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
                     86: *>          either SELECT(j) or SELECT(j+1) or both must be set to
                     87: *>          .TRUE.; a complex conjugate pair of eigenvalues must be
                     88: *>          either both included in the cluster or both excluded.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] N
                     92: *> \verbatim
                     93: *>          N is INTEGER
                     94: *>          The order of the matrix T. N >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] T
                     98: *> \verbatim
                     99: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                    100: *>          On entry, the upper quasi-triangular matrix T, in Schur
                    101: *>          canonical form.
                    102: *>          On exit, T is overwritten by the reordered matrix T, again in
                    103: *>          Schur canonical form, with the selected eigenvalues in the
                    104: *>          leading diagonal blocks.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDT
                    108: *> \verbatim
                    109: *>          LDT is INTEGER
                    110: *>          The leading dimension of the array T. LDT >= max(1,N).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in,out] Q
                    114: *> \verbatim
                    115: *>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
                    116: *>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
                    117: *>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
                    118: *>          orthogonal transformation matrix which reorders T; the
                    119: *>          leading M columns of Q form an orthonormal basis for the
                    120: *>          specified invariant subspace.
                    121: *>          If COMPQ = 'N', Q is not referenced.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in] LDQ
                    125: *> \verbatim
                    126: *>          LDQ is INTEGER
                    127: *>          The leading dimension of the array Q.
                    128: *>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
                    129: *> \endverbatim
                    130: *>
                    131: *> \param[out] WR
                    132: *> \verbatim
                    133: *>          WR is DOUBLE PRECISION array, dimension (N)
                    134: *> \endverbatim
                    135: *> \param[out] WI
                    136: *> \verbatim
                    137: *>          WI is DOUBLE PRECISION array, dimension (N)
                    138: *>
                    139: *>          The real and imaginary parts, respectively, of the reordered
                    140: *>          eigenvalues of T. The eigenvalues are stored in the same
                    141: *>          order as on the diagonal of T, with WR(i) = T(i,i) and, if
                    142: *>          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
                    143: *>          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
                    144: *>          sufficiently ill-conditioned, then its value may differ
                    145: *>          significantly from its value before reordering.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] M
                    149: *> \verbatim
                    150: *>          M is INTEGER
                    151: *>          The dimension of the specified invariant subspace.
                    152: *>          0 < = M <= N.
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] S
                    156: *> \verbatim
                    157: *>          S is DOUBLE PRECISION
                    158: *>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
                    159: *>          condition number for the selected cluster of eigenvalues.
                    160: *>          S cannot underestimate the true reciprocal condition number
                    161: *>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
                    162: *>          If JOB = 'N' or 'V', S is not referenced.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] SEP
                    166: *> \verbatim
                    167: *>          SEP is DOUBLE PRECISION
                    168: *>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
                    169: *>          condition number of the specified invariant subspace. If
                    170: *>          M = 0 or N, SEP = norm(T).
                    171: *>          If JOB = 'N' or 'E', SEP is not referenced.
                    172: *> \endverbatim
                    173: *>
                    174: *> \param[out] WORK
                    175: *> \verbatim
                    176: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    177: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    178: *> \endverbatim
                    179: *>
                    180: *> \param[in] LWORK
                    181: *> \verbatim
                    182: *>          LWORK is INTEGER
                    183: *>          The dimension of the array WORK.
                    184: *>          If JOB = 'N', LWORK >= max(1,N);
                    185: *>          if JOB = 'E', LWORK >= max(1,M*(N-M));
                    186: *>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
                    187: *>
                    188: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    189: *>          only calculates the optimal size of the WORK array, returns
                    190: *>          this value as the first entry of the WORK array, and no error
                    191: *>          message related to LWORK is issued by XERBLA.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] IWORK
                    195: *> \verbatim
                    196: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    197: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LIWORK
                    201: *> \verbatim
                    202: *>          LIWORK is INTEGER
                    203: *>          The dimension of the array IWORK.
                    204: *>          If JOB = 'N' or 'E', LIWORK >= 1;
                    205: *>          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
                    206: *>
                    207: *>          If LIWORK = -1, then a workspace query is assumed; the
                    208: *>          routine only calculates the optimal size of the IWORK array,
                    209: *>          returns this value as the first entry of the IWORK array, and
                    210: *>          no error message related to LIWORK is issued by XERBLA.
                    211: *> \endverbatim
                    212: *>
                    213: *> \param[out] INFO
                    214: *> \verbatim
                    215: *>          INFO is INTEGER
                    216: *>          = 0: successful exit
                    217: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    218: *>          = 1: reordering of T failed because some eigenvalues are too
                    219: *>               close to separate (the problem is very ill-conditioned);
                    220: *>               T may have been partially reordered, and WR and WI
                    221: *>               contain the eigenvalues in the same order as in T; S and
                    222: *>               SEP (if requested) are set to zero.
                    223: *> \endverbatim
                    224: *
                    225: *  Authors:
                    226: *  ========
                    227: *
                    228: *> \author Univ. of Tennessee 
                    229: *> \author Univ. of California Berkeley 
                    230: *> \author Univ. of Colorado Denver 
                    231: *> \author NAG Ltd. 
                    232: *
1.11    ! bertrand  233: *> \date April 2012
1.9       bertrand  234: *
                    235: *> \ingroup doubleOTHERcomputational
                    236: *
                    237: *> \par Further Details:
                    238: *  =====================
                    239: *>
                    240: *> \verbatim
                    241: *>
                    242: *>  DTRSEN first collects the selected eigenvalues by computing an
                    243: *>  orthogonal transformation Z to move them to the top left corner of T.
                    244: *>  In other words, the selected eigenvalues are the eigenvalues of T11
                    245: *>  in:
                    246: *>
                    247: *>          Z**T * T * Z = ( T11 T12 ) n1
                    248: *>                         (  0  T22 ) n2
                    249: *>                            n1  n2
                    250: *>
                    251: *>  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
                    252: *>  of Z span the specified invariant subspace of T.
                    253: *>
                    254: *>  If T has been obtained from the real Schur factorization of a matrix
                    255: *>  A = Q*T*Q**T, then the reordered real Schur factorization of A is given
                    256: *>  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
                    257: *>  the corresponding invariant subspace of A.
                    258: *>
                    259: *>  The reciprocal condition number of the average of the eigenvalues of
                    260: *>  T11 may be returned in S. S lies between 0 (very badly conditioned)
                    261: *>  and 1 (very well conditioned). It is computed as follows. First we
                    262: *>  compute R so that
                    263: *>
                    264: *>                         P = ( I  R ) n1
                    265: *>                             ( 0  0 ) n2
                    266: *>                               n1 n2
                    267: *>
                    268: *>  is the projector on the invariant subspace associated with T11.
                    269: *>  R is the solution of the Sylvester equation:
                    270: *>
                    271: *>                        T11*R - R*T22 = T12.
                    272: *>
                    273: *>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
                    274: *>  the two-norm of M. Then S is computed as the lower bound
                    275: *>
                    276: *>                      (1 + F-norm(R)**2)**(-1/2)
                    277: *>
                    278: *>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
                    279: *>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
                    280: *>  sqrt(N).
                    281: *>
                    282: *>  An approximate error bound for the computed average of the
                    283: *>  eigenvalues of T11 is
                    284: *>
                    285: *>                         EPS * norm(T) / S
                    286: *>
                    287: *>  where EPS is the machine precision.
                    288: *>
                    289: *>  The reciprocal condition number of the right invariant subspace
                    290: *>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
                    291: *>  SEP is defined as the separation of T11 and T22:
                    292: *>
                    293: *>                     sep( T11, T22 ) = sigma-min( C )
                    294: *>
                    295: *>  where sigma-min(C) is the smallest singular value of the
                    296: *>  n1*n2-by-n1*n2 matrix
                    297: *>
                    298: *>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
                    299: *>
                    300: *>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
                    301: *>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
                    302: *>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
                    303: *>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
                    304: *>
                    305: *>  When SEP is small, small changes in T can cause large changes in
                    306: *>  the invariant subspace. An approximate bound on the maximum angular
                    307: *>  error in the computed right invariant subspace is
                    308: *>
                    309: *>                      EPS * norm(T) / SEP
                    310: *> \endverbatim
                    311: *>
                    312: *  =====================================================================
1.1       bertrand  313:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
                    314:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
                    315: *
1.11    ! bertrand  316: *  -- LAPACK computational routine (version 3.4.1) --
1.1       bertrand  317: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    318: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.11    ! bertrand  319: *     April 2012
1.1       bertrand  320: *
                    321: *     .. Scalar Arguments ..
                    322:       CHARACTER          COMPQ, JOB
                    323:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
                    324:       DOUBLE PRECISION   S, SEP
                    325: *     ..
                    326: *     .. Array Arguments ..
                    327:       LOGICAL            SELECT( * )
                    328:       INTEGER            IWORK( * )
                    329:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
                    330:      $                   WR( * )
                    331: *     ..
                    332: *
                    333: *  =====================================================================
                    334: *
                    335: *     .. Parameters ..
                    336:       DOUBLE PRECISION   ZERO, ONE
                    337:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    338: *     ..
                    339: *     .. Local Scalars ..
                    340:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
                    341:      $                   WANTSP
                    342:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
                    343:      $                   NN
                    344:       DOUBLE PRECISION   EST, RNORM, SCALE
                    345: *     ..
                    346: *     .. Local Arrays ..
                    347:       INTEGER            ISAVE( 3 )
                    348: *     ..
                    349: *     .. External Functions ..
                    350:       LOGICAL            LSAME
                    351:       DOUBLE PRECISION   DLANGE
                    352:       EXTERNAL           LSAME, DLANGE
                    353: *     ..
                    354: *     .. External Subroutines ..
                    355:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
                    356: *     ..
                    357: *     .. Intrinsic Functions ..
                    358:       INTRINSIC          ABS, MAX, SQRT
                    359: *     ..
                    360: *     .. Executable Statements ..
                    361: *
                    362: *     Decode and test the input parameters
                    363: *
                    364:       WANTBH = LSAME( JOB, 'B' )
                    365:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    366:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
                    367:       WANTQ = LSAME( COMPQ, 'V' )
                    368: *
                    369:       INFO = 0
                    370:       LQUERY = ( LWORK.EQ.-1 )
                    371:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
                    372:      $     THEN
                    373:          INFO = -1
                    374:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
                    375:          INFO = -2
                    376:       ELSE IF( N.LT.0 ) THEN
                    377:          INFO = -4
                    378:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    379:          INFO = -6
                    380:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
                    381:          INFO = -8
                    382:       ELSE
                    383: *
                    384: *        Set M to the dimension of the specified invariant subspace,
                    385: *        and test LWORK and LIWORK.
                    386: *
                    387:          M = 0
                    388:          PAIR = .FALSE.
                    389:          DO 10 K = 1, N
                    390:             IF( PAIR ) THEN
                    391:                PAIR = .FALSE.
                    392:             ELSE
                    393:                IF( K.LT.N ) THEN
                    394:                   IF( T( K+1, K ).EQ.ZERO ) THEN
                    395:                      IF( SELECT( K ) )
                    396:      $                  M = M + 1
                    397:                   ELSE
                    398:                      PAIR = .TRUE.
                    399:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    400:      $                  M = M + 2
                    401:                   END IF
                    402:                ELSE
                    403:                   IF( SELECT( N ) )
                    404:      $               M = M + 1
                    405:                END IF
                    406:             END IF
                    407:    10    CONTINUE
                    408: *
                    409:          N1 = M
                    410:          N2 = N - M
                    411:          NN = N1*N2
                    412: *
                    413:          IF( WANTSP ) THEN
                    414:             LWMIN = MAX( 1, 2*NN )
                    415:             LIWMIN = MAX( 1, NN )
                    416:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
                    417:             LWMIN = MAX( 1, N )
                    418:             LIWMIN = 1
                    419:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
                    420:             LWMIN = MAX( 1, NN )
                    421:             LIWMIN = 1
                    422:          END IF
                    423: *
                    424:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    425:             INFO = -15
                    426:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
                    427:             INFO = -17
                    428:          END IF
                    429:       END IF
                    430: *
                    431:       IF( INFO.EQ.0 ) THEN
                    432:          WORK( 1 ) = LWMIN
                    433:          IWORK( 1 ) = LIWMIN
                    434:       END IF
                    435: *
                    436:       IF( INFO.NE.0 ) THEN
                    437:          CALL XERBLA( 'DTRSEN', -INFO )
                    438:          RETURN
                    439:       ELSE IF( LQUERY ) THEN
                    440:          RETURN
                    441:       END IF
                    442: *
                    443: *     Quick return if possible.
                    444: *
                    445:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
                    446:          IF( WANTS )
                    447:      $      S = ONE
                    448:          IF( WANTSP )
                    449:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
                    450:          GO TO 40
                    451:       END IF
                    452: *
                    453: *     Collect the selected blocks at the top-left corner of T.
                    454: *
                    455:       KS = 0
                    456:       PAIR = .FALSE.
                    457:       DO 20 K = 1, N
                    458:          IF( PAIR ) THEN
                    459:             PAIR = .FALSE.
                    460:          ELSE
                    461:             SWAP = SELECT( K )
                    462:             IF( K.LT.N ) THEN
                    463:                IF( T( K+1, K ).NE.ZERO ) THEN
                    464:                   PAIR = .TRUE.
                    465:                   SWAP = SWAP .OR. SELECT( K+1 )
                    466:                END IF
                    467:             END IF
                    468:             IF( SWAP ) THEN
                    469:                KS = KS + 1
                    470: *
                    471: *              Swap the K-th block to position KS.
                    472: *
                    473:                IERR = 0
                    474:                KK = K
                    475:                IF( K.NE.KS )
                    476:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
                    477:      $                         IERR )
                    478:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
                    479: *
                    480: *                 Blocks too close to swap: exit.
                    481: *
                    482:                   INFO = 1
                    483:                   IF( WANTS )
                    484:      $               S = ZERO
                    485:                   IF( WANTSP )
                    486:      $               SEP = ZERO
                    487:                   GO TO 40
                    488:                END IF
                    489:                IF( PAIR )
                    490:      $            KS = KS + 1
                    491:             END IF
                    492:          END IF
                    493:    20 CONTINUE
                    494: *
                    495:       IF( WANTS ) THEN
                    496: *
                    497: *        Solve Sylvester equation for R:
                    498: *
                    499: *           T11*R - R*T22 = scale*T12
                    500: *
                    501:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
                    502:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
                    503:      $                LDT, WORK, N1, SCALE, IERR )
                    504: *
                    505: *        Estimate the reciprocal of the condition number of the cluster
                    506: *        of eigenvalues.
                    507: *
                    508:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
                    509:          IF( RNORM.EQ.ZERO ) THEN
                    510:             S = ONE
                    511:          ELSE
                    512:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
                    513:      $          SQRT( RNORM ) )
                    514:          END IF
                    515:       END IF
                    516: *
                    517:       IF( WANTSP ) THEN
                    518: *
                    519: *        Estimate sep(T11,T22).
                    520: *
                    521:          EST = ZERO
                    522:          KASE = 0
                    523:    30    CONTINUE
                    524:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
                    525:          IF( KASE.NE.0 ) THEN
                    526:             IF( KASE.EQ.1 ) THEN
                    527: *
                    528: *              Solve  T11*R - R*T22 = scale*X.
                    529: *
                    530:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
                    531:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    532:      $                      IERR )
                    533:             ELSE
                    534: *
1.8       bertrand  535: *              Solve T11**T*R - R*T22**T = scale*X.
1.1       bertrand  536: *
                    537:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
                    538:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
                    539:      $                      IERR )
                    540:             END IF
                    541:             GO TO 30
                    542:          END IF
                    543: *
                    544:          SEP = SCALE / EST
                    545:       END IF
                    546: *
                    547:    40 CONTINUE
                    548: *
                    549: *     Store the output eigenvalues in WR and WI.
                    550: *
                    551:       DO 50 K = 1, N
                    552:          WR( K ) = T( K, K )
                    553:          WI( K ) = ZERO
                    554:    50 CONTINUE
                    555:       DO 60 K = 1, N - 1
                    556:          IF( T( K+1, K ).NE.ZERO ) THEN
                    557:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
                    558:      $                SQRT( ABS( T( K+1, K ) ) )
                    559:             WI( K+1 ) = -WI( K )
                    560:          END IF
                    561:    60 CONTINUE
                    562: *
                    563:       WORK( 1 ) = LWMIN
                    564:       IWORK( 1 ) = LIWMIN
                    565: *
                    566:       RETURN
                    567: *
                    568: *     End of DTRSEN
                    569: *
                    570:       END

CVSweb interface <joel.bertrand@systella.fr>