Annotation of rpl/lapack/lapack/dtrsen.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
        !             2:      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          COMPQ, JOB
        !            11:       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
        !            12:       DOUBLE PRECISION   S, SEP
        !            13: *     ..
        !            14: *     .. Array Arguments ..
        !            15:       LOGICAL            SELECT( * )
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
        !            18:      $                   WR( * )
        !            19: *     ..
        !            20: *
        !            21: *  Purpose
        !            22: *  =======
        !            23: *
        !            24: *  DTRSEN reorders the real Schur factorization of a real matrix
        !            25: *  A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
        !            26: *  the leading diagonal blocks of the upper quasi-triangular matrix T,
        !            27: *  and the leading columns of Q form an orthonormal basis of the
        !            28: *  corresponding right invariant subspace.
        !            29: *
        !            30: *  Optionally the routine computes the reciprocal condition numbers of
        !            31: *  the cluster of eigenvalues and/or the invariant subspace.
        !            32: *
        !            33: *  T must be in Schur canonical form (as returned by DHSEQR), that is,
        !            34: *  block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
        !            35: *  2-by-2 diagonal block has its diagonal elemnts equal and its
        !            36: *  off-diagonal elements of opposite sign.
        !            37: *
        !            38: *  Arguments
        !            39: *  =========
        !            40: *
        !            41: *  JOB     (input) CHARACTER*1
        !            42: *          Specifies whether condition numbers are required for the
        !            43: *          cluster of eigenvalues (S) or the invariant subspace (SEP):
        !            44: *          = 'N': none;
        !            45: *          = 'E': for eigenvalues only (S);
        !            46: *          = 'V': for invariant subspace only (SEP);
        !            47: *          = 'B': for both eigenvalues and invariant subspace (S and
        !            48: *                 SEP).
        !            49: *
        !            50: *  COMPQ   (input) CHARACTER*1
        !            51: *          = 'V': update the matrix Q of Schur vectors;
        !            52: *          = 'N': do not update Q.
        !            53: *
        !            54: *  SELECT  (input) LOGICAL array, dimension (N)
        !            55: *          SELECT specifies the eigenvalues in the selected cluster. To
        !            56: *          select a real eigenvalue w(j), SELECT(j) must be set to
        !            57: *          .TRUE.. To select a complex conjugate pair of eigenvalues
        !            58: *          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
        !            59: *          either SELECT(j) or SELECT(j+1) or both must be set to
        !            60: *          .TRUE.; a complex conjugate pair of eigenvalues must be
        !            61: *          either both included in the cluster or both excluded.
        !            62: *
        !            63: *  N       (input) INTEGER
        !            64: *          The order of the matrix T. N >= 0.
        !            65: *
        !            66: *  T       (input/output) DOUBLE PRECISION array, dimension (LDT,N)
        !            67: *          On entry, the upper quasi-triangular matrix T, in Schur
        !            68: *          canonical form.
        !            69: *          On exit, T is overwritten by the reordered matrix T, again in
        !            70: *          Schur canonical form, with the selected eigenvalues in the
        !            71: *          leading diagonal blocks.
        !            72: *
        !            73: *  LDT     (input) INTEGER
        !            74: *          The leading dimension of the array T. LDT >= max(1,N).
        !            75: *
        !            76: *  Q       (input/output) DOUBLE PRECISION array, dimension (LDQ,N)
        !            77: *          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
        !            78: *          On exit, if COMPQ = 'V', Q has been postmultiplied by the
        !            79: *          orthogonal transformation matrix which reorders T; the
        !            80: *          leading M columns of Q form an orthonormal basis for the
        !            81: *          specified invariant subspace.
        !            82: *          If COMPQ = 'N', Q is not referenced.
        !            83: *
        !            84: *  LDQ     (input) INTEGER
        !            85: *          The leading dimension of the array Q.
        !            86: *          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
        !            87: *
        !            88: *  WR      (output) DOUBLE PRECISION array, dimension (N)
        !            89: *  WI      (output) DOUBLE PRECISION array, dimension (N)
        !            90: *          The real and imaginary parts, respectively, of the reordered
        !            91: *          eigenvalues of T. The eigenvalues are stored in the same
        !            92: *          order as on the diagonal of T, with WR(i) = T(i,i) and, if
        !            93: *          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
        !            94: *          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
        !            95: *          sufficiently ill-conditioned, then its value may differ
        !            96: *          significantly from its value before reordering.
        !            97: *
        !            98: *  M       (output) INTEGER
        !            99: *          The dimension of the specified invariant subspace.
        !           100: *          0 < = M <= N.
        !           101: *
        !           102: *  S       (output) DOUBLE PRECISION
        !           103: *          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
        !           104: *          condition number for the selected cluster of eigenvalues.
        !           105: *          S cannot underestimate the true reciprocal condition number
        !           106: *          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
        !           107: *          If JOB = 'N' or 'V', S is not referenced.
        !           108: *
        !           109: *  SEP     (output) DOUBLE PRECISION
        !           110: *          If JOB = 'V' or 'B', SEP is the estimated reciprocal
        !           111: *          condition number of the specified invariant subspace. If
        !           112: *          M = 0 or N, SEP = norm(T).
        !           113: *          If JOB = 'N' or 'E', SEP is not referenced.
        !           114: *
        !           115: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           116: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           117: *
        !           118: *  LWORK   (input) INTEGER
        !           119: *          The dimension of the array WORK.
        !           120: *          If JOB = 'N', LWORK >= max(1,N);
        !           121: *          if JOB = 'E', LWORK >= max(1,M*(N-M));
        !           122: *          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
        !           123: *
        !           124: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           125: *          only calculates the optimal size of the WORK array, returns
        !           126: *          this value as the first entry of the WORK array, and no error
        !           127: *          message related to LWORK is issued by XERBLA.
        !           128: *
        !           129: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
        !           130: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           131: *
        !           132: *  LIWORK  (input) INTEGER
        !           133: *          The dimension of the array IWORK.
        !           134: *          If JOB = 'N' or 'E', LIWORK >= 1;
        !           135: *          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
        !           136: *
        !           137: *          If LIWORK = -1, then a workspace query is assumed; the
        !           138: *          routine only calculates the optimal size of the IWORK array,
        !           139: *          returns this value as the first entry of the IWORK array, and
        !           140: *          no error message related to LIWORK is issued by XERBLA.
        !           141: *
        !           142: *  INFO    (output) INTEGER
        !           143: *          = 0: successful exit
        !           144: *          < 0: if INFO = -i, the i-th argument had an illegal value
        !           145: *          = 1: reordering of T failed because some eigenvalues are too
        !           146: *               close to separate (the problem is very ill-conditioned);
        !           147: *               T may have been partially reordered, and WR and WI
        !           148: *               contain the eigenvalues in the same order as in T; S and
        !           149: *               SEP (if requested) are set to zero.
        !           150: *
        !           151: *  Further Details
        !           152: *  ===============
        !           153: *
        !           154: *  DTRSEN first collects the selected eigenvalues by computing an
        !           155: *  orthogonal transformation Z to move them to the top left corner of T.
        !           156: *  In other words, the selected eigenvalues are the eigenvalues of T11
        !           157: *  in:
        !           158: *
        !           159: *                Z'*T*Z = ( T11 T12 ) n1
        !           160: *                         (  0  T22 ) n2
        !           161: *                            n1  n2
        !           162: *
        !           163: *  where N = n1+n2 and Z' means the transpose of Z. The first n1 columns
        !           164: *  of Z span the specified invariant subspace of T.
        !           165: *
        !           166: *  If T has been obtained from the real Schur factorization of a matrix
        !           167: *  A = Q*T*Q', then the reordered real Schur factorization of A is given
        !           168: *  by A = (Q*Z)*(Z'*T*Z)*(Q*Z)', and the first n1 columns of Q*Z span
        !           169: *  the corresponding invariant subspace of A.
        !           170: *
        !           171: *  The reciprocal condition number of the average of the eigenvalues of
        !           172: *  T11 may be returned in S. S lies between 0 (very badly conditioned)
        !           173: *  and 1 (very well conditioned). It is computed as follows. First we
        !           174: *  compute R so that
        !           175: *
        !           176: *                         P = ( I  R ) n1
        !           177: *                             ( 0  0 ) n2
        !           178: *                               n1 n2
        !           179: *
        !           180: *  is the projector on the invariant subspace associated with T11.
        !           181: *  R is the solution of the Sylvester equation:
        !           182: *
        !           183: *                        T11*R - R*T22 = T12.
        !           184: *
        !           185: *  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
        !           186: *  the two-norm of M. Then S is computed as the lower bound
        !           187: *
        !           188: *                      (1 + F-norm(R)**2)**(-1/2)
        !           189: *
        !           190: *  on the reciprocal of 2-norm(P), the true reciprocal condition number.
        !           191: *  S cannot underestimate 1 / 2-norm(P) by more than a factor of
        !           192: *  sqrt(N).
        !           193: *
        !           194: *  An approximate error bound for the computed average of the
        !           195: *  eigenvalues of T11 is
        !           196: *
        !           197: *                         EPS * norm(T) / S
        !           198: *
        !           199: *  where EPS is the machine precision.
        !           200: *
        !           201: *  The reciprocal condition number of the right invariant subspace
        !           202: *  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
        !           203: *  SEP is defined as the separation of T11 and T22:
        !           204: *
        !           205: *                     sep( T11, T22 ) = sigma-min( C )
        !           206: *
        !           207: *  where sigma-min(C) is the smallest singular value of the
        !           208: *  n1*n2-by-n1*n2 matrix
        !           209: *
        !           210: *     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
        !           211: *
        !           212: *  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
        !           213: *  product. We estimate sigma-min(C) by the reciprocal of an estimate of
        !           214: *  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
        !           215: *  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
        !           216: *
        !           217: *  When SEP is small, small changes in T can cause large changes in
        !           218: *  the invariant subspace. An approximate bound on the maximum angular
        !           219: *  error in the computed right invariant subspace is
        !           220: *
        !           221: *                      EPS * norm(T) / SEP
        !           222: *
        !           223: *  =====================================================================
        !           224: *
        !           225: *     .. Parameters ..
        !           226:       DOUBLE PRECISION   ZERO, ONE
        !           227:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           228: *     ..
        !           229: *     .. Local Scalars ..
        !           230:       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
        !           231:      $                   WANTSP
        !           232:       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
        !           233:      $                   NN
        !           234:       DOUBLE PRECISION   EST, RNORM, SCALE
        !           235: *     ..
        !           236: *     .. Local Arrays ..
        !           237:       INTEGER            ISAVE( 3 )
        !           238: *     ..
        !           239: *     .. External Functions ..
        !           240:       LOGICAL            LSAME
        !           241:       DOUBLE PRECISION   DLANGE
        !           242:       EXTERNAL           LSAME, DLANGE
        !           243: *     ..
        !           244: *     .. External Subroutines ..
        !           245:       EXTERNAL           DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
        !           246: *     ..
        !           247: *     .. Intrinsic Functions ..
        !           248:       INTRINSIC          ABS, MAX, SQRT
        !           249: *     ..
        !           250: *     .. Executable Statements ..
        !           251: *
        !           252: *     Decode and test the input parameters
        !           253: *
        !           254:       WANTBH = LSAME( JOB, 'B' )
        !           255:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
        !           256:       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
        !           257:       WANTQ = LSAME( COMPQ, 'V' )
        !           258: *
        !           259:       INFO = 0
        !           260:       LQUERY = ( LWORK.EQ.-1 )
        !           261:       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
        !           262:      $     THEN
        !           263:          INFO = -1
        !           264:       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
        !           265:          INFO = -2
        !           266:       ELSE IF( N.LT.0 ) THEN
        !           267:          INFO = -4
        !           268:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
        !           269:          INFO = -6
        !           270:       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
        !           271:          INFO = -8
        !           272:       ELSE
        !           273: *
        !           274: *        Set M to the dimension of the specified invariant subspace,
        !           275: *        and test LWORK and LIWORK.
        !           276: *
        !           277:          M = 0
        !           278:          PAIR = .FALSE.
        !           279:          DO 10 K = 1, N
        !           280:             IF( PAIR ) THEN
        !           281:                PAIR = .FALSE.
        !           282:             ELSE
        !           283:                IF( K.LT.N ) THEN
        !           284:                   IF( T( K+1, K ).EQ.ZERO ) THEN
        !           285:                      IF( SELECT( K ) )
        !           286:      $                  M = M + 1
        !           287:                   ELSE
        !           288:                      PAIR = .TRUE.
        !           289:                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
        !           290:      $                  M = M + 2
        !           291:                   END IF
        !           292:                ELSE
        !           293:                   IF( SELECT( N ) )
        !           294:      $               M = M + 1
        !           295:                END IF
        !           296:             END IF
        !           297:    10    CONTINUE
        !           298: *
        !           299:          N1 = M
        !           300:          N2 = N - M
        !           301:          NN = N1*N2
        !           302: *
        !           303:          IF( WANTSP ) THEN
        !           304:             LWMIN = MAX( 1, 2*NN )
        !           305:             LIWMIN = MAX( 1, NN )
        !           306:          ELSE IF( LSAME( JOB, 'N' ) ) THEN
        !           307:             LWMIN = MAX( 1, N )
        !           308:             LIWMIN = 1
        !           309:          ELSE IF( LSAME( JOB, 'E' ) ) THEN
        !           310:             LWMIN = MAX( 1, NN )
        !           311:             LIWMIN = 1
        !           312:          END IF
        !           313: *
        !           314:          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
        !           315:             INFO = -15
        !           316:          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
        !           317:             INFO = -17
        !           318:          END IF
        !           319:       END IF
        !           320: *
        !           321:       IF( INFO.EQ.0 ) THEN
        !           322:          WORK( 1 ) = LWMIN
        !           323:          IWORK( 1 ) = LIWMIN
        !           324:       END IF
        !           325: *
        !           326:       IF( INFO.NE.0 ) THEN
        !           327:          CALL XERBLA( 'DTRSEN', -INFO )
        !           328:          RETURN
        !           329:       ELSE IF( LQUERY ) THEN
        !           330:          RETURN
        !           331:       END IF
        !           332: *
        !           333: *     Quick return if possible.
        !           334: *
        !           335:       IF( M.EQ.N .OR. M.EQ.0 ) THEN
        !           336:          IF( WANTS )
        !           337:      $      S = ONE
        !           338:          IF( WANTSP )
        !           339:      $      SEP = DLANGE( '1', N, N, T, LDT, WORK )
        !           340:          GO TO 40
        !           341:       END IF
        !           342: *
        !           343: *     Collect the selected blocks at the top-left corner of T.
        !           344: *
        !           345:       KS = 0
        !           346:       PAIR = .FALSE.
        !           347:       DO 20 K = 1, N
        !           348:          IF( PAIR ) THEN
        !           349:             PAIR = .FALSE.
        !           350:          ELSE
        !           351:             SWAP = SELECT( K )
        !           352:             IF( K.LT.N ) THEN
        !           353:                IF( T( K+1, K ).NE.ZERO ) THEN
        !           354:                   PAIR = .TRUE.
        !           355:                   SWAP = SWAP .OR. SELECT( K+1 )
        !           356:                END IF
        !           357:             END IF
        !           358:             IF( SWAP ) THEN
        !           359:                KS = KS + 1
        !           360: *
        !           361: *              Swap the K-th block to position KS.
        !           362: *
        !           363:                IERR = 0
        !           364:                KK = K
        !           365:                IF( K.NE.KS )
        !           366:      $            CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
        !           367:      $                         IERR )
        !           368:                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
        !           369: *
        !           370: *                 Blocks too close to swap: exit.
        !           371: *
        !           372:                   INFO = 1
        !           373:                   IF( WANTS )
        !           374:      $               S = ZERO
        !           375:                   IF( WANTSP )
        !           376:      $               SEP = ZERO
        !           377:                   GO TO 40
        !           378:                END IF
        !           379:                IF( PAIR )
        !           380:      $            KS = KS + 1
        !           381:             END IF
        !           382:          END IF
        !           383:    20 CONTINUE
        !           384: *
        !           385:       IF( WANTS ) THEN
        !           386: *
        !           387: *        Solve Sylvester equation for R:
        !           388: *
        !           389: *           T11*R - R*T22 = scale*T12
        !           390: *
        !           391:          CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
        !           392:          CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
        !           393:      $                LDT, WORK, N1, SCALE, IERR )
        !           394: *
        !           395: *        Estimate the reciprocal of the condition number of the cluster
        !           396: *        of eigenvalues.
        !           397: *
        !           398:          RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
        !           399:          IF( RNORM.EQ.ZERO ) THEN
        !           400:             S = ONE
        !           401:          ELSE
        !           402:             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
        !           403:      $          SQRT( RNORM ) )
        !           404:          END IF
        !           405:       END IF
        !           406: *
        !           407:       IF( WANTSP ) THEN
        !           408: *
        !           409: *        Estimate sep(T11,T22).
        !           410: *
        !           411:          EST = ZERO
        !           412:          KASE = 0
        !           413:    30    CONTINUE
        !           414:          CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
        !           415:          IF( KASE.NE.0 ) THEN
        !           416:             IF( KASE.EQ.1 ) THEN
        !           417: *
        !           418: *              Solve  T11*R - R*T22 = scale*X.
        !           419: *
        !           420:                CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
        !           421:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
        !           422:      $                      IERR )
        !           423:             ELSE
        !           424: *
        !           425: *              Solve  T11'*R - R*T22' = scale*X.
        !           426: *
        !           427:                CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
        !           428:      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
        !           429:      $                      IERR )
        !           430:             END IF
        !           431:             GO TO 30
        !           432:          END IF
        !           433: *
        !           434:          SEP = SCALE / EST
        !           435:       END IF
        !           436: *
        !           437:    40 CONTINUE
        !           438: *
        !           439: *     Store the output eigenvalues in WR and WI.
        !           440: *
        !           441:       DO 50 K = 1, N
        !           442:          WR( K ) = T( K, K )
        !           443:          WI( K ) = ZERO
        !           444:    50 CONTINUE
        !           445:       DO 60 K = 1, N - 1
        !           446:          IF( T( K+1, K ).NE.ZERO ) THEN
        !           447:             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
        !           448:      $                SQRT( ABS( T( K+1, K ) ) )
        !           449:             WI( K+1 ) = -WI( K )
        !           450:          END IF
        !           451:    60 CONTINUE
        !           452: *
        !           453:       WORK( 1 ) = LWMIN
        !           454:       IWORK( 1 ) = LIWMIN
        !           455: *
        !           456:       RETURN
        !           457: *
        !           458: *     End of DTRSEN
        !           459: *
        !           460:       END

CVSweb interface <joel.bertrand@systella.fr>