File:  [local] / rpl / lapack / lapack / dtrrfs.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:13 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTRRFS
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTRRFS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrrfs.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrrfs.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrrfs.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
   22: *                          LDX, FERR, BERR, WORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          DIAG, TRANS, UPLO
   26: *       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
   31: *      $                   WORK( * ), X( LDX, * )
   32: *       ..
   33: *
   34: *
   35: *> \par Purpose:
   36: *  =============
   37: *>
   38: *> \verbatim
   39: *>
   40: *> DTRRFS provides error bounds and backward error estimates for the
   41: *> solution to a system of linear equations with a triangular
   42: *> coefficient matrix.
   43: *>
   44: *> The solution matrix X must be computed by DTRTRS or some other
   45: *> means before entering this routine.  DTRRFS does not do iterative
   46: *> refinement because doing so cannot improve the backward error.
   47: *> \endverbatim
   48: *
   49: *  Arguments:
   50: *  ==========
   51: *
   52: *> \param[in] UPLO
   53: *> \verbatim
   54: *>          UPLO is CHARACTER*1
   55: *>          = 'U':  A is upper triangular;
   56: *>          = 'L':  A is lower triangular.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] TRANS
   60: *> \verbatim
   61: *>          TRANS is CHARACTER*1
   62: *>          Specifies the form of the system of equations:
   63: *>          = 'N':  A * X = B  (No transpose)
   64: *>          = 'T':  A**T * X = B  (Transpose)
   65: *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   66: *> \endverbatim
   67: *>
   68: *> \param[in] DIAG
   69: *> \verbatim
   70: *>          DIAG is CHARACTER*1
   71: *>          = 'N':  A is non-unit triangular;
   72: *>          = 'U':  A is unit triangular.
   73: *> \endverbatim
   74: *>
   75: *> \param[in] N
   76: *> \verbatim
   77: *>          N is INTEGER
   78: *>          The order of the matrix A.  N >= 0.
   79: *> \endverbatim
   80: *>
   81: *> \param[in] NRHS
   82: *> \verbatim
   83: *>          NRHS is INTEGER
   84: *>          The number of right hand sides, i.e., the number of columns
   85: *>          of the matrices B and X.  NRHS >= 0.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] A
   89: *> \verbatim
   90: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   91: *>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
   92: *>          upper triangular part of the array A contains the upper
   93: *>          triangular matrix, and the strictly lower triangular part of
   94: *>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
   95: *>          triangular part of the array A contains the lower triangular
   96: *>          matrix, and the strictly upper triangular part of A is not
   97: *>          referenced.  If DIAG = 'U', the diagonal elements of A are
   98: *>          also not referenced and are assumed to be 1.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDA
  102: *> \verbatim
  103: *>          LDA is INTEGER
  104: *>          The leading dimension of the array A.  LDA >= max(1,N).
  105: *> \endverbatim
  106: *>
  107: *> \param[in] B
  108: *> \verbatim
  109: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  110: *>          The right hand side matrix B.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] LDB
  114: *> \verbatim
  115: *>          LDB is INTEGER
  116: *>          The leading dimension of the array B.  LDB >= max(1,N).
  117: *> \endverbatim
  118: *>
  119: *> \param[in] X
  120: *> \verbatim
  121: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  122: *>          The solution matrix X.
  123: *> \endverbatim
  124: *>
  125: *> \param[in] LDX
  126: *> \verbatim
  127: *>          LDX is INTEGER
  128: *>          The leading dimension of the array X.  LDX >= max(1,N).
  129: *> \endverbatim
  130: *>
  131: *> \param[out] FERR
  132: *> \verbatim
  133: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
  134: *>          The estimated forward error bound for each solution vector
  135: *>          X(j) (the j-th column of the solution matrix X).
  136: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
  137: *>          is an estimated upper bound for the magnitude of the largest
  138: *>          element in (X(j) - XTRUE) divided by the magnitude of the
  139: *>          largest element in X(j).  The estimate is as reliable as
  140: *>          the estimate for RCOND, and is almost always a slight
  141: *>          overestimate of the true error.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] BERR
  145: *> \verbatim
  146: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
  147: *>          The componentwise relative backward error of each solution
  148: *>          vector X(j) (i.e., the smallest relative change in
  149: *>          any element of A or B that makes X(j) an exact solution).
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WORK
  153: *> \verbatim
  154: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
  155: *> \endverbatim
  156: *>
  157: *> \param[out] IWORK
  158: *> \verbatim
  159: *>          IWORK is INTEGER array, dimension (N)
  160: *> \endverbatim
  161: *>
  162: *> \param[out] INFO
  163: *> \verbatim
  164: *>          INFO is INTEGER
  165: *>          = 0:  successful exit
  166: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  167: *> \endverbatim
  168: *
  169: *  Authors:
  170: *  ========
  171: *
  172: *> \author Univ. of Tennessee
  173: *> \author Univ. of California Berkeley
  174: *> \author Univ. of Colorado Denver
  175: *> \author NAG Ltd.
  176: *
  177: *> \ingroup doubleOTHERcomputational
  178: *
  179: *  =====================================================================
  180:       SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
  181:      $                   LDX, FERR, BERR, WORK, IWORK, INFO )
  182: *
  183: *  -- LAPACK computational routine --
  184: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  185: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  186: *
  187: *     .. Scalar Arguments ..
  188:       CHARACTER          DIAG, TRANS, UPLO
  189:       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
  190: *     ..
  191: *     .. Array Arguments ..
  192:       INTEGER            IWORK( * )
  193:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
  194:      $                   WORK( * ), X( LDX, * )
  195: *     ..
  196: *
  197: *  =====================================================================
  198: *
  199: *     .. Parameters ..
  200:       DOUBLE PRECISION   ZERO
  201:       PARAMETER          ( ZERO = 0.0D+0 )
  202:       DOUBLE PRECISION   ONE
  203:       PARAMETER          ( ONE = 1.0D+0 )
  204: *     ..
  205: *     .. Local Scalars ..
  206:       LOGICAL            NOTRAN, NOUNIT, UPPER
  207:       CHARACTER          TRANST
  208:       INTEGER            I, J, K, KASE, NZ
  209:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  210: *     ..
  211: *     .. Local Arrays ..
  212:       INTEGER            ISAVE( 3 )
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           DAXPY, DCOPY, DLACN2, DTRMV, DTRSV, XERBLA
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC          ABS, MAX
  219: *     ..
  220: *     .. External Functions ..
  221:       LOGICAL            LSAME
  222:       DOUBLE PRECISION   DLAMCH
  223:       EXTERNAL           LSAME, DLAMCH
  224: *     ..
  225: *     .. Executable Statements ..
  226: *
  227: *     Test the input parameters.
  228: *
  229:       INFO = 0
  230:       UPPER = LSAME( UPLO, 'U' )
  231:       NOTRAN = LSAME( TRANS, 'N' )
  232:       NOUNIT = LSAME( DIAG, 'N' )
  233: *
  234:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  235:          INFO = -1
  236:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  237:      $         LSAME( TRANS, 'C' ) ) THEN
  238:          INFO = -2
  239:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  240:          INFO = -3
  241:       ELSE IF( N.LT.0 ) THEN
  242:          INFO = -4
  243:       ELSE IF( NRHS.LT.0 ) THEN
  244:          INFO = -5
  245:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  246:          INFO = -7
  247:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  248:          INFO = -9
  249:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  250:          INFO = -11
  251:       END IF
  252:       IF( INFO.NE.0 ) THEN
  253:          CALL XERBLA( 'DTRRFS', -INFO )
  254:          RETURN
  255:       END IF
  256: *
  257: *     Quick return if possible
  258: *
  259:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  260:          DO 10 J = 1, NRHS
  261:             FERR( J ) = ZERO
  262:             BERR( J ) = ZERO
  263:    10    CONTINUE
  264:          RETURN
  265:       END IF
  266: *
  267:       IF( NOTRAN ) THEN
  268:          TRANST = 'T'
  269:       ELSE
  270:          TRANST = 'N'
  271:       END IF
  272: *
  273: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  274: *
  275:       NZ = N + 1
  276:       EPS = DLAMCH( 'Epsilon' )
  277:       SAFMIN = DLAMCH( 'Safe minimum' )
  278:       SAFE1 = NZ*SAFMIN
  279:       SAFE2 = SAFE1 / EPS
  280: *
  281: *     Do for each right hand side
  282: *
  283:       DO 250 J = 1, NRHS
  284: *
  285: *        Compute residual R = B - op(A) * X,
  286: *        where op(A) = A or A**T, depending on TRANS.
  287: *
  288:          CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  289:          CALL DTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ), 1 )
  290:          CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  291: *
  292: *        Compute componentwise relative backward error from formula
  293: *
  294: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  295: *
  296: *        where abs(Z) is the componentwise absolute value of the matrix
  297: *        or vector Z.  If the i-th component of the denominator is less
  298: *        than SAFE2, then SAFE1 is added to the i-th components of the
  299: *        numerator and denominator before dividing.
  300: *
  301:          DO 20 I = 1, N
  302:             WORK( I ) = ABS( B( I, J ) )
  303:    20    CONTINUE
  304: *
  305:          IF( NOTRAN ) THEN
  306: *
  307: *           Compute abs(A)*abs(X) + abs(B).
  308: *
  309:             IF( UPPER ) THEN
  310:                IF( NOUNIT ) THEN
  311:                   DO 40 K = 1, N
  312:                      XK = ABS( X( K, J ) )
  313:                      DO 30 I = 1, K
  314:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  315:    30                CONTINUE
  316:    40             CONTINUE
  317:                ELSE
  318:                   DO 60 K = 1, N
  319:                      XK = ABS( X( K, J ) )
  320:                      DO 50 I = 1, K - 1
  321:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  322:    50                CONTINUE
  323:                      WORK( K ) = WORK( K ) + XK
  324:    60             CONTINUE
  325:                END IF
  326:             ELSE
  327:                IF( NOUNIT ) THEN
  328:                   DO 80 K = 1, N
  329:                      XK = ABS( X( K, J ) )
  330:                      DO 70 I = K, N
  331:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  332:    70                CONTINUE
  333:    80             CONTINUE
  334:                ELSE
  335:                   DO 100 K = 1, N
  336:                      XK = ABS( X( K, J ) )
  337:                      DO 90 I = K + 1, N
  338:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  339:    90                CONTINUE
  340:                      WORK( K ) = WORK( K ) + XK
  341:   100             CONTINUE
  342:                END IF
  343:             END IF
  344:          ELSE
  345: *
  346: *           Compute abs(A**T)*abs(X) + abs(B).
  347: *
  348:             IF( UPPER ) THEN
  349:                IF( NOUNIT ) THEN
  350:                   DO 120 K = 1, N
  351:                      S = ZERO
  352:                      DO 110 I = 1, K
  353:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  354:   110                CONTINUE
  355:                      WORK( K ) = WORK( K ) + S
  356:   120             CONTINUE
  357:                ELSE
  358:                   DO 140 K = 1, N
  359:                      S = ABS( X( K, J ) )
  360:                      DO 130 I = 1, K - 1
  361:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  362:   130                CONTINUE
  363:                      WORK( K ) = WORK( K ) + S
  364:   140             CONTINUE
  365:                END IF
  366:             ELSE
  367:                IF( NOUNIT ) THEN
  368:                   DO 160 K = 1, N
  369:                      S = ZERO
  370:                      DO 150 I = K, N
  371:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  372:   150                CONTINUE
  373:                      WORK( K ) = WORK( K ) + S
  374:   160             CONTINUE
  375:                ELSE
  376:                   DO 180 K = 1, N
  377:                      S = ABS( X( K, J ) )
  378:                      DO 170 I = K + 1, N
  379:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  380:   170                CONTINUE
  381:                      WORK( K ) = WORK( K ) + S
  382:   180             CONTINUE
  383:                END IF
  384:             END IF
  385:          END IF
  386:          S = ZERO
  387:          DO 190 I = 1, N
  388:             IF( WORK( I ).GT.SAFE2 ) THEN
  389:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  390:             ELSE
  391:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  392:      $             ( WORK( I )+SAFE1 ) )
  393:             END IF
  394:   190    CONTINUE
  395:          BERR( J ) = S
  396: *
  397: *        Bound error from formula
  398: *
  399: *        norm(X - XTRUE) / norm(X) .le. FERR =
  400: *        norm( abs(inv(op(A)))*
  401: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  402: *
  403: *        where
  404: *          norm(Z) is the magnitude of the largest component of Z
  405: *          inv(op(A)) is the inverse of op(A)
  406: *          abs(Z) is the componentwise absolute value of the matrix or
  407: *             vector Z
  408: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  409: *          EPS is machine epsilon
  410: *
  411: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  412: *        is incremented by SAFE1 if the i-th component of
  413: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  414: *
  415: *        Use DLACN2 to estimate the infinity-norm of the matrix
  416: *           inv(op(A)) * diag(W),
  417: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  418: *
  419:          DO 200 I = 1, N
  420:             IF( WORK( I ).GT.SAFE2 ) THEN
  421:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  422:             ELSE
  423:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  424:             END IF
  425:   200    CONTINUE
  426: *
  427:          KASE = 0
  428:   210    CONTINUE
  429:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  430:      $                KASE, ISAVE )
  431:          IF( KASE.NE.0 ) THEN
  432:             IF( KASE.EQ.1 ) THEN
  433: *
  434: *              Multiply by diag(W)*inv(op(A)**T).
  435: *
  436:                CALL DTRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK( N+1 ),
  437:      $                     1 )
  438:                DO 220 I = 1, N
  439:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  440:   220          CONTINUE
  441:             ELSE
  442: *
  443: *              Multiply by inv(op(A))*diag(W).
  444: *
  445:                DO 230 I = 1, N
  446:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  447:   230          CONTINUE
  448:                CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ),
  449:      $                     1 )
  450:             END IF
  451:             GO TO 210
  452:          END IF
  453: *
  454: *        Normalize error.
  455: *
  456:          LSTRES = ZERO
  457:          DO 240 I = 1, N
  458:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  459:   240    CONTINUE
  460:          IF( LSTRES.NE.ZERO )
  461:      $      FERR( J ) = FERR( J ) / LSTRES
  462: *
  463:   250 CONTINUE
  464: *
  465:       RETURN
  466: *
  467: *     End of DTRRFS
  468: *
  469:       END

CVSweb interface <joel.bertrand@systella.fr>