File:  [local] / rpl / lapack / lapack / dtrrfs.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Fri Jul 22 07:38:13 2011 UTC (12 years, 10 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_3, rpl-4_1_2, rpl-4_1_1, HEAD
En route vers la 4.4.1.

    1:       SUBROUTINE DTRRFS( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
    2:      $                   LDX, FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.3.1) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *  -- April 2011                                                      --
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          DIAG, TRANS, UPLO
   13:       INTEGER            INFO, LDA, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), BERR( * ), FERR( * ),
   18:      $                   WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DTRRFS provides error bounds and backward error estimates for the
   25: *  solution to a system of linear equations with a triangular
   26: *  coefficient matrix.
   27: *
   28: *  The solution matrix X must be computed by DTRTRS or some other
   29: *  means before entering this routine.  DTRRFS does not do iterative
   30: *  refinement because doing so cannot improve the backward error.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  UPLO    (input) CHARACTER*1
   36: *          = 'U':  A is upper triangular;
   37: *          = 'L':  A is lower triangular.
   38: *
   39: *  TRANS   (input) CHARACTER*1
   40: *          Specifies the form of the system of equations:
   41: *          = 'N':  A * X = B  (No transpose)
   42: *          = 'T':  A**T * X = B  (Transpose)
   43: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   44: *
   45: *  DIAG    (input) CHARACTER*1
   46: *          = 'N':  A is non-unit triangular;
   47: *          = 'U':  A is unit triangular.
   48: *
   49: *  N       (input) INTEGER
   50: *          The order of the matrix A.  N >= 0.
   51: *
   52: *  NRHS    (input) INTEGER
   53: *          The number of right hand sides, i.e., the number of columns
   54: *          of the matrices B and X.  NRHS >= 0.
   55: *
   56: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
   57: *          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
   58: *          upper triangular part of the array A contains the upper
   59: *          triangular matrix, and the strictly lower triangular part of
   60: *          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
   61: *          triangular part of the array A contains the lower triangular
   62: *          matrix, and the strictly upper triangular part of A is not
   63: *          referenced.  If DIAG = 'U', the diagonal elements of A are
   64: *          also not referenced and are assumed to be 1.
   65: *
   66: *  LDA     (input) INTEGER
   67: *          The leading dimension of the array A.  LDA >= max(1,N).
   68: *
   69: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   70: *          The right hand side matrix B.
   71: *
   72: *  LDB     (input) INTEGER
   73: *          The leading dimension of the array B.  LDB >= max(1,N).
   74: *
   75: *  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
   76: *          The solution matrix X.
   77: *
   78: *  LDX     (input) INTEGER
   79: *          The leading dimension of the array X.  LDX >= max(1,N).
   80: *
   81: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   82: *          The estimated forward error bound for each solution vector
   83: *          X(j) (the j-th column of the solution matrix X).
   84: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   85: *          is an estimated upper bound for the magnitude of the largest
   86: *          element in (X(j) - XTRUE) divided by the magnitude of the
   87: *          largest element in X(j).  The estimate is as reliable as
   88: *          the estimate for RCOND, and is almost always a slight
   89: *          overestimate of the true error.
   90: *
   91: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   92: *          The componentwise relative backward error of each solution
   93: *          vector X(j) (i.e., the smallest relative change in
   94: *          any element of A or B that makes X(j) an exact solution).
   95: *
   96: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
   97: *
   98: *  IWORK   (workspace) INTEGER array, dimension (N)
   99: *
  100: *  INFO    (output) INTEGER
  101: *          = 0:  successful exit
  102: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  103: *
  104: *  =====================================================================
  105: *
  106: *     .. Parameters ..
  107:       DOUBLE PRECISION   ZERO
  108:       PARAMETER          ( ZERO = 0.0D+0 )
  109:       DOUBLE PRECISION   ONE
  110:       PARAMETER          ( ONE = 1.0D+0 )
  111: *     ..
  112: *     .. Local Scalars ..
  113:       LOGICAL            NOTRAN, NOUNIT, UPPER
  114:       CHARACTER          TRANST
  115:       INTEGER            I, J, K, KASE, NZ
  116:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  117: *     ..
  118: *     .. Local Arrays ..
  119:       INTEGER            ISAVE( 3 )
  120: *     ..
  121: *     .. External Subroutines ..
  122:       EXTERNAL           DAXPY, DCOPY, DLACN2, DTRMV, DTRSV, XERBLA
  123: *     ..
  124: *     .. Intrinsic Functions ..
  125:       INTRINSIC          ABS, MAX
  126: *     ..
  127: *     .. External Functions ..
  128:       LOGICAL            LSAME
  129:       DOUBLE PRECISION   DLAMCH
  130:       EXTERNAL           LSAME, DLAMCH
  131: *     ..
  132: *     .. Executable Statements ..
  133: *
  134: *     Test the input parameters.
  135: *
  136:       INFO = 0
  137:       UPPER = LSAME( UPLO, 'U' )
  138:       NOTRAN = LSAME( TRANS, 'N' )
  139:       NOUNIT = LSAME( DIAG, 'N' )
  140: *
  141:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  142:          INFO = -1
  143:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  144:      $         LSAME( TRANS, 'C' ) ) THEN
  145:          INFO = -2
  146:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  147:          INFO = -3
  148:       ELSE IF( N.LT.0 ) THEN
  149:          INFO = -4
  150:       ELSE IF( NRHS.LT.0 ) THEN
  151:          INFO = -5
  152:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  153:          INFO = -7
  154:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  155:          INFO = -9
  156:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  157:          INFO = -11
  158:       END IF
  159:       IF( INFO.NE.0 ) THEN
  160:          CALL XERBLA( 'DTRRFS', -INFO )
  161:          RETURN
  162:       END IF
  163: *
  164: *     Quick return if possible
  165: *
  166:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  167:          DO 10 J = 1, NRHS
  168:             FERR( J ) = ZERO
  169:             BERR( J ) = ZERO
  170:    10    CONTINUE
  171:          RETURN
  172:       END IF
  173: *
  174:       IF( NOTRAN ) THEN
  175:          TRANST = 'T'
  176:       ELSE
  177:          TRANST = 'N'
  178:       END IF
  179: *
  180: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  181: *
  182:       NZ = N + 1
  183:       EPS = DLAMCH( 'Epsilon' )
  184:       SAFMIN = DLAMCH( 'Safe minimum' )
  185:       SAFE1 = NZ*SAFMIN
  186:       SAFE2 = SAFE1 / EPS
  187: *
  188: *     Do for each right hand side
  189: *
  190:       DO 250 J = 1, NRHS
  191: *
  192: *        Compute residual R = B - op(A) * X,
  193: *        where op(A) = A or A**T, depending on TRANS.
  194: *
  195:          CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  196:          CALL DTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ), 1 )
  197:          CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  198: *
  199: *        Compute componentwise relative backward error from formula
  200: *
  201: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  202: *
  203: *        where abs(Z) is the componentwise absolute value of the matrix
  204: *        or vector Z.  If the i-th component of the denominator is less
  205: *        than SAFE2, then SAFE1 is added to the i-th components of the
  206: *        numerator and denominator before dividing.
  207: *
  208:          DO 20 I = 1, N
  209:             WORK( I ) = ABS( B( I, J ) )
  210:    20    CONTINUE
  211: *
  212:          IF( NOTRAN ) THEN
  213: *
  214: *           Compute abs(A)*abs(X) + abs(B).
  215: *
  216:             IF( UPPER ) THEN
  217:                IF( NOUNIT ) THEN
  218:                   DO 40 K = 1, N
  219:                      XK = ABS( X( K, J ) )
  220:                      DO 30 I = 1, K
  221:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  222:    30                CONTINUE
  223:    40             CONTINUE
  224:                ELSE
  225:                   DO 60 K = 1, N
  226:                      XK = ABS( X( K, J ) )
  227:                      DO 50 I = 1, K - 1
  228:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  229:    50                CONTINUE
  230:                      WORK( K ) = WORK( K ) + XK
  231:    60             CONTINUE
  232:                END IF
  233:             ELSE
  234:                IF( NOUNIT ) THEN
  235:                   DO 80 K = 1, N
  236:                      XK = ABS( X( K, J ) )
  237:                      DO 70 I = K, N
  238:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  239:    70                CONTINUE
  240:    80             CONTINUE
  241:                ELSE
  242:                   DO 100 K = 1, N
  243:                      XK = ABS( X( K, J ) )
  244:                      DO 90 I = K + 1, N
  245:                         WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  246:    90                CONTINUE
  247:                      WORK( K ) = WORK( K ) + XK
  248:   100             CONTINUE
  249:                END IF
  250:             END IF
  251:          ELSE
  252: *
  253: *           Compute abs(A**T)*abs(X) + abs(B).
  254: *
  255:             IF( UPPER ) THEN
  256:                IF( NOUNIT ) THEN
  257:                   DO 120 K = 1, N
  258:                      S = ZERO
  259:                      DO 110 I = 1, K
  260:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  261:   110                CONTINUE
  262:                      WORK( K ) = WORK( K ) + S
  263:   120             CONTINUE
  264:                ELSE
  265:                   DO 140 K = 1, N
  266:                      S = ABS( X( K, J ) )
  267:                      DO 130 I = 1, K - 1
  268:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  269:   130                CONTINUE
  270:                      WORK( K ) = WORK( K ) + S
  271:   140             CONTINUE
  272:                END IF
  273:             ELSE
  274:                IF( NOUNIT ) THEN
  275:                   DO 160 K = 1, N
  276:                      S = ZERO
  277:                      DO 150 I = K, N
  278:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  279:   150                CONTINUE
  280:                      WORK( K ) = WORK( K ) + S
  281:   160             CONTINUE
  282:                ELSE
  283:                   DO 180 K = 1, N
  284:                      S = ABS( X( K, J ) )
  285:                      DO 170 I = K + 1, N
  286:                         S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  287:   170                CONTINUE
  288:                      WORK( K ) = WORK( K ) + S
  289:   180             CONTINUE
  290:                END IF
  291:             END IF
  292:          END IF
  293:          S = ZERO
  294:          DO 190 I = 1, N
  295:             IF( WORK( I ).GT.SAFE2 ) THEN
  296:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  297:             ELSE
  298:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  299:      $             ( WORK( I )+SAFE1 ) )
  300:             END IF
  301:   190    CONTINUE
  302:          BERR( J ) = S
  303: *
  304: *        Bound error from formula
  305: *
  306: *        norm(X - XTRUE) / norm(X) .le. FERR =
  307: *        norm( abs(inv(op(A)))*
  308: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  309: *
  310: *        where
  311: *          norm(Z) is the magnitude of the largest component of Z
  312: *          inv(op(A)) is the inverse of op(A)
  313: *          abs(Z) is the componentwise absolute value of the matrix or
  314: *             vector Z
  315: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  316: *          EPS is machine epsilon
  317: *
  318: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  319: *        is incremented by SAFE1 if the i-th component of
  320: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  321: *
  322: *        Use DLACN2 to estimate the infinity-norm of the matrix
  323: *           inv(op(A)) * diag(W),
  324: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  325: *
  326:          DO 200 I = 1, N
  327:             IF( WORK( I ).GT.SAFE2 ) THEN
  328:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  329:             ELSE
  330:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  331:             END IF
  332:   200    CONTINUE
  333: *
  334:          KASE = 0
  335:   210    CONTINUE
  336:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  337:      $                KASE, ISAVE )
  338:          IF( KASE.NE.0 ) THEN
  339:             IF( KASE.EQ.1 ) THEN
  340: *
  341: *              Multiply by diag(W)*inv(op(A)**T).
  342: *
  343:                CALL DTRSV( UPLO, TRANST, DIAG, N, A, LDA, WORK( N+1 ),
  344:      $                     1 )
  345:                DO 220 I = 1, N
  346:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  347:   220          CONTINUE
  348:             ELSE
  349: *
  350: *              Multiply by inv(op(A))*diag(W).
  351: *
  352:                DO 230 I = 1, N
  353:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  354:   230          CONTINUE
  355:                CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, WORK( N+1 ),
  356:      $                     1 )
  357:             END IF
  358:             GO TO 210
  359:          END IF
  360: *
  361: *        Normalize error.
  362: *
  363:          LSTRES = ZERO
  364:          DO 240 I = 1, N
  365:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  366:   240    CONTINUE
  367:          IF( LSTRES.NE.ZERO )
  368:      $      FERR( J ) = FERR( J ) / LSTRES
  369: *
  370:   250 CONTINUE
  371: *
  372:       RETURN
  373: *
  374: *     End of DTRRFS
  375: *
  376:       END

CVSweb interface <joel.bertrand@systella.fr>