File:  [local] / rpl / lapack / lapack / dtpttf.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:39:13 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTPTTF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpttf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpttf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpttf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DTPTTF copies a triangular matrix A from standard packed format (TP)
   37: *> to rectangular full packed format (TF).
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] TRANSR
   44: *> \verbatim
   45: *>          TRANSR is CHARACTER*1
   46: *>          = 'N':  ARF in Normal format is wanted;
   47: *>          = 'T':  ARF in Conjugate-transpose format is wanted.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] UPLO
   51: *> \verbatim
   52: *>          UPLO is CHARACTER*1
   53: *>          = 'U':  A is upper triangular;
   54: *>          = 'L':  A is lower triangular.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>          The order of the matrix A.  N >= 0.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] AP
   64: *> \verbatim
   65: *>          AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   66: *>          On entry, the upper or lower triangular matrix A, packed
   67: *>          columnwise in a linear array. The j-th column of A is stored
   68: *>          in the array AP as follows:
   69: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   70: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   71: *> \endverbatim
   72: *>
   73: *> \param[out] ARF
   74: *> \verbatim
   75: *>          ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   76: *>          On exit, the upper or lower triangular matrix A stored in
   77: *>          RFP format. For a further discussion see Notes below.
   78: *> \endverbatim
   79: *>
   80: *> \param[out] INFO
   81: *> \verbatim
   82: *>          INFO is INTEGER
   83: *>          = 0:  successful exit
   84: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   85: *> \endverbatim
   86: *
   87: *  Authors:
   88: *  ========
   89: *
   90: *> \author Univ. of Tennessee
   91: *> \author Univ. of California Berkeley
   92: *> \author Univ. of Colorado Denver
   93: *> \author NAG Ltd.
   94: *
   95: *> \ingroup doubleOTHERcomputational
   96: *
   97: *> \par Further Details:
   98: *  =====================
   99: *>
  100: *> \verbatim
  101: *>
  102: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  103: *>  even. We give an example where N = 6.
  104: *>
  105: *>      AP is Upper             AP is Lower
  106: *>
  107: *>   00 01 02 03 04 05       00
  108: *>      11 12 13 14 15       10 11
  109: *>         22 23 24 25       20 21 22
  110: *>            33 34 35       30 31 32 33
  111: *>               44 45       40 41 42 43 44
  112: *>                  55       50 51 52 53 54 55
  113: *>
  114: *>
  115: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  116: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  117: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  118: *>  the transpose of the first three columns of AP upper.
  119: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  120: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  121: *>  the transpose of the last three columns of AP lower.
  122: *>  This covers the case N even and TRANSR = 'N'.
  123: *>
  124: *>         RFP A                   RFP A
  125: *>
  126: *>        03 04 05                33 43 53
  127: *>        13 14 15                00 44 54
  128: *>        23 24 25                10 11 55
  129: *>        33 34 35                20 21 22
  130: *>        00 44 45                30 31 32
  131: *>        01 11 55                40 41 42
  132: *>        02 12 22                50 51 52
  133: *>
  134: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  135: *>  transpose of RFP A above. One therefore gets:
  136: *>
  137: *>
  138: *>           RFP A                   RFP A
  139: *>
  140: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  141: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  142: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  143: *>
  144: *>
  145: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  146: *>  odd. We give an example where N = 5.
  147: *>
  148: *>     AP is Upper                 AP is Lower
  149: *>
  150: *>   00 01 02 03 04              00
  151: *>      11 12 13 14              10 11
  152: *>         22 23 24              20 21 22
  153: *>            33 34              30 31 32 33
  154: *>               44              40 41 42 43 44
  155: *>
  156: *>
  157: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  158: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  159: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  160: *>  the transpose of the first two columns of AP upper.
  161: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  162: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  163: *>  the transpose of the last two columns of AP lower.
  164: *>  This covers the case N odd and TRANSR = 'N'.
  165: *>
  166: *>         RFP A                   RFP A
  167: *>
  168: *>        02 03 04                00 33 43
  169: *>        12 13 14                10 11 44
  170: *>        22 23 24                20 21 22
  171: *>        00 33 34                30 31 32
  172: *>        01 11 44                40 41 42
  173: *>
  174: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  175: *>  transpose of RFP A above. One therefore gets:
  176: *>
  177: *>           RFP A                   RFP A
  178: *>
  179: *>     02 12 22 00 01             00 10 20 30 40 50
  180: *>     03 13 23 33 11             33 11 21 31 41 51
  181: *>     04 14 24 34 44             43 44 22 32 42 52
  182: *> \endverbatim
  183: *>
  184: *  =====================================================================
  185:       SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  186: *
  187: *  -- LAPACK computational routine --
  188: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  189: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  190: *
  191: *     .. Scalar Arguments ..
  192:       CHARACTER          TRANSR, UPLO
  193:       INTEGER            INFO, N
  194: *     ..
  195: *     .. Array Arguments ..
  196:       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
  197: *
  198: *  =====================================================================
  199: *
  200: *     .. Parameters ..
  201: *     ..
  202: *     .. Local Scalars ..
  203:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  204:       INTEGER            N1, N2, K, NT
  205:       INTEGER            I, J, IJ
  206:       INTEGER            IJP, JP, LDA, JS
  207: *     ..
  208: *     .. External Functions ..
  209:       LOGICAL            LSAME
  210:       EXTERNAL           LSAME
  211: *     ..
  212: *     .. External Subroutines ..
  213:       EXTERNAL           XERBLA
  214: *     ..
  215: *     .. Intrinsic Functions ..
  216:       INTRINSIC          MOD
  217: *     ..
  218: *     .. Executable Statements ..
  219: *
  220: *     Test the input parameters.
  221: *
  222:       INFO = 0
  223:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  224:       LOWER = LSAME( UPLO, 'L' )
  225:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  226:          INFO = -1
  227:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  228:          INFO = -2
  229:       ELSE IF( N.LT.0 ) THEN
  230:          INFO = -3
  231:       END IF
  232:       IF( INFO.NE.0 ) THEN
  233:          CALL XERBLA( 'DTPTTF', -INFO )
  234:          RETURN
  235:       END IF
  236: *
  237: *     Quick return if possible
  238: *
  239:       IF( N.EQ.0 )
  240:      $   RETURN
  241: *
  242:       IF( N.EQ.1 ) THEN
  243:          IF( NORMALTRANSR ) THEN
  244:             ARF( 0 ) = AP( 0 )
  245:          ELSE
  246:             ARF( 0 ) = AP( 0 )
  247:          END IF
  248:          RETURN
  249:       END IF
  250: *
  251: *     Size of array ARF(0:NT-1)
  252: *
  253:       NT = N*( N+1 ) / 2
  254: *
  255: *     Set N1 and N2 depending on LOWER
  256: *
  257:       IF( LOWER ) THEN
  258:          N2 = N / 2
  259:          N1 = N - N2
  260:       ELSE
  261:          N1 = N / 2
  262:          N2 = N - N1
  263:       END IF
  264: *
  265: *     If N is odd, set NISODD = .TRUE.
  266: *     If N is even, set K = N/2 and NISODD = .FALSE.
  267: *
  268: *     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  269: *     where noe = 0 if n is even, noe = 1 if n is odd
  270: *
  271:       IF( MOD( N, 2 ).EQ.0 ) THEN
  272:          K = N / 2
  273:          NISODD = .FALSE.
  274:          LDA = N + 1
  275:       ELSE
  276:          NISODD = .TRUE.
  277:          LDA = N
  278:       END IF
  279: *
  280: *     ARF^C has lda rows and n+1-noe cols
  281: *
  282:       IF( .NOT.NORMALTRANSR )
  283:      $   LDA = ( N+1 ) / 2
  284: *
  285: *     start execution: there are eight cases
  286: *
  287:       IF( NISODD ) THEN
  288: *
  289: *        N is odd
  290: *
  291:          IF( NORMALTRANSR ) THEN
  292: *
  293: *           N is odd and TRANSR = 'N'
  294: *
  295:             IF( LOWER ) THEN
  296: *
  297: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  298: *
  299:                IJP = 0
  300:                JP = 0
  301:                DO J = 0, N2
  302:                   DO I = J, N - 1
  303:                      IJ = I + JP
  304:                      ARF( IJ ) = AP( IJP )
  305:                      IJP = IJP + 1
  306:                   END DO
  307:                   JP = JP + LDA
  308:                END DO
  309:                DO I = 0, N2 - 1
  310:                   DO J = 1 + I, N2
  311:                      IJ = I + J*LDA
  312:                      ARF( IJ ) = AP( IJP )
  313:                      IJP = IJP + 1
  314:                   END DO
  315:                END DO
  316: *
  317:             ELSE
  318: *
  319: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  320: *
  321:                IJP = 0
  322:                DO J = 0, N1 - 1
  323:                   IJ = N2 + J
  324:                   DO I = 0, J
  325:                      ARF( IJ ) = AP( IJP )
  326:                      IJP = IJP + 1
  327:                      IJ = IJ + LDA
  328:                   END DO
  329:                END DO
  330:                JS = 0
  331:                DO J = N1, N - 1
  332:                   IJ = JS
  333:                   DO IJ = JS, JS + J
  334:                      ARF( IJ ) = AP( IJP )
  335:                      IJP = IJP + 1
  336:                   END DO
  337:                   JS = JS + LDA
  338:                END DO
  339: *
  340:             END IF
  341: *
  342:          ELSE
  343: *
  344: *           N is odd and TRANSR = 'T'
  345: *
  346:             IF( LOWER ) THEN
  347: *
  348: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  349: *
  350:                IJP = 0
  351:                DO I = 0, N2
  352:                   DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  353:                      ARF( IJ ) = AP( IJP )
  354:                      IJP = IJP + 1
  355:                   END DO
  356:                END DO
  357:                JS = 1
  358:                DO J = 0, N2 - 1
  359:                   DO IJ = JS, JS + N2 - J - 1
  360:                      ARF( IJ ) = AP( IJP )
  361:                      IJP = IJP + 1
  362:                   END DO
  363:                   JS = JS + LDA + 1
  364:                END DO
  365: *
  366:             ELSE
  367: *
  368: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  369: *
  370:                IJP = 0
  371:                JS = N2*LDA
  372:                DO J = 0, N1 - 1
  373:                   DO IJ = JS, JS + J
  374:                      ARF( IJ ) = AP( IJP )
  375:                      IJP = IJP + 1
  376:                   END DO
  377:                   JS = JS + LDA
  378:                END DO
  379:                DO I = 0, N1
  380:                   DO IJ = I, I + ( N1+I )*LDA, LDA
  381:                      ARF( IJ ) = AP( IJP )
  382:                      IJP = IJP + 1
  383:                   END DO
  384:                END DO
  385: *
  386:             END IF
  387: *
  388:          END IF
  389: *
  390:       ELSE
  391: *
  392: *        N is even
  393: *
  394:          IF( NORMALTRANSR ) THEN
  395: *
  396: *           N is even and TRANSR = 'N'
  397: *
  398:             IF( LOWER ) THEN
  399: *
  400: *              N is even, TRANSR = 'N', and UPLO = 'L'
  401: *
  402:                IJP = 0
  403:                JP = 0
  404:                DO J = 0, K - 1
  405:                   DO I = J, N - 1
  406:                      IJ = 1 + I + JP
  407:                      ARF( IJ ) = AP( IJP )
  408:                      IJP = IJP + 1
  409:                   END DO
  410:                   JP = JP + LDA
  411:                END DO
  412:                DO I = 0, K - 1
  413:                   DO J = I, K - 1
  414:                      IJ = I + J*LDA
  415:                      ARF( IJ ) = AP( IJP )
  416:                      IJP = IJP + 1
  417:                   END DO
  418:                END DO
  419: *
  420:             ELSE
  421: *
  422: *              N is even, TRANSR = 'N', and UPLO = 'U'
  423: *
  424:                IJP = 0
  425:                DO J = 0, K - 1
  426:                   IJ = K + 1 + J
  427:                   DO I = 0, J
  428:                      ARF( IJ ) = AP( IJP )
  429:                      IJP = IJP + 1
  430:                      IJ = IJ + LDA
  431:                   END DO
  432:                END DO
  433:                JS = 0
  434:                DO J = K, N - 1
  435:                   IJ = JS
  436:                   DO IJ = JS, JS + J
  437:                      ARF( IJ ) = AP( IJP )
  438:                      IJP = IJP + 1
  439:                   END DO
  440:                   JS = JS + LDA
  441:                END DO
  442: *
  443:             END IF
  444: *
  445:          ELSE
  446: *
  447: *           N is even and TRANSR = 'T'
  448: *
  449:             IF( LOWER ) THEN
  450: *
  451: *              N is even, TRANSR = 'T', and UPLO = 'L'
  452: *
  453:                IJP = 0
  454:                DO I = 0, K - 1
  455:                   DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  456:                      ARF( IJ ) = AP( IJP )
  457:                      IJP = IJP + 1
  458:                   END DO
  459:                END DO
  460:                JS = 0
  461:                DO J = 0, K - 1
  462:                   DO IJ = JS, JS + K - J - 1
  463:                      ARF( IJ ) = AP( IJP )
  464:                      IJP = IJP + 1
  465:                   END DO
  466:                   JS = JS + LDA + 1
  467:                END DO
  468: *
  469:             ELSE
  470: *
  471: *              N is even, TRANSR = 'T', and UPLO = 'U'
  472: *
  473:                IJP = 0
  474:                JS = ( K+1 )*LDA
  475:                DO J = 0, K - 1
  476:                   DO IJ = JS, JS + J
  477:                      ARF( IJ ) = AP( IJP )
  478:                      IJP = IJP + 1
  479:                   END DO
  480:                   JS = JS + LDA
  481:                END DO
  482:                DO I = 0, K - 1
  483:                   DO IJ = I, I + ( K+I )*LDA, LDA
  484:                      ARF( IJ ) = AP( IJP )
  485:                      IJP = IJP + 1
  486:                   END DO
  487:                END DO
  488: *
  489:             END IF
  490: *
  491:          END IF
  492: *
  493:       END IF
  494: *
  495:       RETURN
  496: *
  497: *     End of DTPTTF
  498: *
  499:       END

CVSweb interface <joel.bertrand@systella.fr>