File:  [local] / rpl / lapack / lapack / dtpttf.f
Revision 1.14: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:54:06 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief \b DTPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTPTTF + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpttf.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpttf.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpttf.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       CHARACTER          TRANSR, UPLO
   25: *       INTEGER            INFO, N
   26: *       ..
   27: *       .. Array Arguments ..
   28: *       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DTPTTF copies a triangular matrix A from standard packed format (TP)
   37: *> to rectangular full packed format (TF).
   38: *> \endverbatim
   39: *
   40: *  Arguments:
   41: *  ==========
   42: *
   43: *> \param[in] TRANSR
   44: *> \verbatim
   45: *>          TRANSR is CHARACTER*1
   46: *>          = 'N':  ARF in Normal format is wanted;
   47: *>          = 'T':  ARF in Conjugate-transpose format is wanted.
   48: *> \endverbatim
   49: *>
   50: *> \param[in] UPLO
   51: *> \verbatim
   52: *>          UPLO is CHARACTER*1
   53: *>          = 'U':  A is upper triangular;
   54: *>          = 'L':  A is lower triangular.
   55: *> \endverbatim
   56: *>
   57: *> \param[in] N
   58: *> \verbatim
   59: *>          N is INTEGER
   60: *>          The order of the matrix A.  N >= 0.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] AP
   64: *> \verbatim
   65: *>          AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   66: *>          On entry, the upper or lower triangular matrix A, packed
   67: *>          columnwise in a linear array. The j-th column of A is stored
   68: *>          in the array AP as follows:
   69: *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   70: *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
   71: *> \endverbatim
   72: *>
   73: *> \param[out] ARF
   74: *> \verbatim
   75: *>          ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
   76: *>          On exit, the upper or lower triangular matrix A stored in
   77: *>          RFP format. For a further discussion see Notes below.
   78: *> \endverbatim
   79: *>
   80: *> \param[out] INFO
   81: *> \verbatim
   82: *>          INFO is INTEGER
   83: *>          = 0:  successful exit
   84: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
   85: *> \endverbatim
   86: *
   87: *  Authors:
   88: *  ========
   89: *
   90: *> \author Univ. of Tennessee
   91: *> \author Univ. of California Berkeley
   92: *> \author Univ. of Colorado Denver
   93: *> \author NAG Ltd.
   94: *
   95: *> \date December 2016
   96: *
   97: *> \ingroup doubleOTHERcomputational
   98: *
   99: *> \par Further Details:
  100: *  =====================
  101: *>
  102: *> \verbatim
  103: *>
  104: *>  We first consider Rectangular Full Packed (RFP) Format when N is
  105: *>  even. We give an example where N = 6.
  106: *>
  107: *>      AP is Upper             AP is Lower
  108: *>
  109: *>   00 01 02 03 04 05       00
  110: *>      11 12 13 14 15       10 11
  111: *>         22 23 24 25       20 21 22
  112: *>            33 34 35       30 31 32 33
  113: *>               44 45       40 41 42 43 44
  114: *>                  55       50 51 52 53 54 55
  115: *>
  116: *>
  117: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  118: *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  119: *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  120: *>  the transpose of the first three columns of AP upper.
  121: *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  122: *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  123: *>  the transpose of the last three columns of AP lower.
  124: *>  This covers the case N even and TRANSR = 'N'.
  125: *>
  126: *>         RFP A                   RFP A
  127: *>
  128: *>        03 04 05                33 43 53
  129: *>        13 14 15                00 44 54
  130: *>        23 24 25                10 11 55
  131: *>        33 34 35                20 21 22
  132: *>        00 44 45                30 31 32
  133: *>        01 11 55                40 41 42
  134: *>        02 12 22                50 51 52
  135: *>
  136: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  137: *>  transpose of RFP A above. One therefore gets:
  138: *>
  139: *>
  140: *>           RFP A                   RFP A
  141: *>
  142: *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
  143: *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
  144: *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
  145: *>
  146: *>
  147: *>  We then consider Rectangular Full Packed (RFP) Format when N is
  148: *>  odd. We give an example where N = 5.
  149: *>
  150: *>     AP is Upper                 AP is Lower
  151: *>
  152: *>   00 01 02 03 04              00
  153: *>      11 12 13 14              10 11
  154: *>         22 23 24              20 21 22
  155: *>            33 34              30 31 32 33
  156: *>               44              40 41 42 43 44
  157: *>
  158: *>
  159: *>  Let TRANSR = 'N'. RFP holds AP as follows:
  160: *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  161: *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  162: *>  the transpose of the first two columns of AP upper.
  163: *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  164: *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  165: *>  the transpose of the last two columns of AP lower.
  166: *>  This covers the case N odd and TRANSR = 'N'.
  167: *>
  168: *>         RFP A                   RFP A
  169: *>
  170: *>        02 03 04                00 33 43
  171: *>        12 13 14                10 11 44
  172: *>        22 23 24                20 21 22
  173: *>        00 33 34                30 31 32
  174: *>        01 11 44                40 41 42
  175: *>
  176: *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  177: *>  transpose of RFP A above. One therefore gets:
  178: *>
  179: *>           RFP A                   RFP A
  180: *>
  181: *>     02 12 22 00 01             00 10 20 30 40 50
  182: *>     03 13 23 33 11             33 11 21 31 41 51
  183: *>     04 14 24 34 44             43 44 22 32 42 52
  184: *> \endverbatim
  185: *>
  186: *  =====================================================================
  187:       SUBROUTINE DTPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
  188: *
  189: *  -- LAPACK computational routine (version 3.7.0) --
  190: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  191: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  192: *     December 2016
  193: *
  194: *     .. Scalar Arguments ..
  195:       CHARACTER          TRANSR, UPLO
  196:       INTEGER            INFO, N
  197: *     ..
  198: *     .. Array Arguments ..
  199:       DOUBLE PRECISION   AP( 0: * ), ARF( 0: * )
  200: *
  201: *  =====================================================================
  202: *
  203: *     .. Parameters ..
  204: *     ..
  205: *     .. Local Scalars ..
  206:       LOGICAL            LOWER, NISODD, NORMALTRANSR
  207:       INTEGER            N1, N2, K, NT
  208:       INTEGER            I, J, IJ
  209:       INTEGER            IJP, JP, LDA, JS
  210: *     ..
  211: *     .. External Functions ..
  212:       LOGICAL            LSAME
  213:       EXTERNAL           LSAME
  214: *     ..
  215: *     .. External Subroutines ..
  216:       EXTERNAL           XERBLA
  217: *     ..
  218: *     .. Intrinsic Functions ..
  219:       INTRINSIC          MOD
  220: *     ..
  221: *     .. Executable Statements ..
  222: *
  223: *     Test the input parameters.
  224: *
  225:       INFO = 0
  226:       NORMALTRANSR = LSAME( TRANSR, 'N' )
  227:       LOWER = LSAME( UPLO, 'L' )
  228:       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  229:          INFO = -1
  230:       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  231:          INFO = -2
  232:       ELSE IF( N.LT.0 ) THEN
  233:          INFO = -3
  234:       END IF
  235:       IF( INFO.NE.0 ) THEN
  236:          CALL XERBLA( 'DTPTTF', -INFO )
  237:          RETURN
  238:       END IF
  239: *
  240: *     Quick return if possible
  241: *
  242:       IF( N.EQ.0 )
  243:      $   RETURN
  244: *
  245:       IF( N.EQ.1 ) THEN
  246:          IF( NORMALTRANSR ) THEN
  247:             ARF( 0 ) = AP( 0 )
  248:          ELSE
  249:             ARF( 0 ) = AP( 0 )
  250:          END IF
  251:          RETURN
  252:       END IF
  253: *
  254: *     Size of array ARF(0:NT-1)
  255: *
  256:       NT = N*( N+1 ) / 2
  257: *
  258: *     Set N1 and N2 depending on LOWER
  259: *
  260:       IF( LOWER ) THEN
  261:          N2 = N / 2
  262:          N1 = N - N2
  263:       ELSE
  264:          N1 = N / 2
  265:          N2 = N - N1
  266:       END IF
  267: *
  268: *     If N is odd, set NISODD = .TRUE.
  269: *     If N is even, set K = N/2 and NISODD = .FALSE.
  270: *
  271: *     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
  272: *     where noe = 0 if n is even, noe = 1 if n is odd
  273: *
  274:       IF( MOD( N, 2 ).EQ.0 ) THEN
  275:          K = N / 2
  276:          NISODD = .FALSE.
  277:          LDA = N + 1
  278:       ELSE
  279:          NISODD = .TRUE.
  280:          LDA = N
  281:       END IF
  282: *
  283: *     ARF^C has lda rows and n+1-noe cols
  284: *
  285:       IF( .NOT.NORMALTRANSR )
  286:      $   LDA = ( N+1 ) / 2
  287: *
  288: *     start execution: there are eight cases
  289: *
  290:       IF( NISODD ) THEN
  291: *
  292: *        N is odd
  293: *
  294:          IF( NORMALTRANSR ) THEN
  295: *
  296: *           N is odd and TRANSR = 'N'
  297: *
  298:             IF( LOWER ) THEN
  299: *
  300: *              N is odd, TRANSR = 'N', and UPLO = 'L'
  301: *
  302:                IJP = 0
  303:                JP = 0
  304:                DO J = 0, N2
  305:                   DO I = J, N - 1
  306:                      IJ = I + JP
  307:                      ARF( IJ ) = AP( IJP )
  308:                      IJP = IJP + 1
  309:                   END DO
  310:                   JP = JP + LDA
  311:                END DO
  312:                DO I = 0, N2 - 1
  313:                   DO J = 1 + I, N2
  314:                      IJ = I + J*LDA
  315:                      ARF( IJ ) = AP( IJP )
  316:                      IJP = IJP + 1
  317:                   END DO
  318:                END DO
  319: *
  320:             ELSE
  321: *
  322: *              N is odd, TRANSR = 'N', and UPLO = 'U'
  323: *
  324:                IJP = 0
  325:                DO J = 0, N1 - 1
  326:                   IJ = N2 + J
  327:                   DO I = 0, J
  328:                      ARF( IJ ) = AP( IJP )
  329:                      IJP = IJP + 1
  330:                      IJ = IJ + LDA
  331:                   END DO
  332:                END DO
  333:                JS = 0
  334:                DO J = N1, N - 1
  335:                   IJ = JS
  336:                   DO IJ = JS, JS + J
  337:                      ARF( IJ ) = AP( IJP )
  338:                      IJP = IJP + 1
  339:                   END DO
  340:                   JS = JS + LDA
  341:                END DO
  342: *
  343:             END IF
  344: *
  345:          ELSE
  346: *
  347: *           N is odd and TRANSR = 'T'
  348: *
  349:             IF( LOWER ) THEN
  350: *
  351: *              N is odd, TRANSR = 'T', and UPLO = 'L'
  352: *
  353:                IJP = 0
  354:                DO I = 0, N2
  355:                   DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
  356:                      ARF( IJ ) = AP( IJP )
  357:                      IJP = IJP + 1
  358:                   END DO
  359:                END DO
  360:                JS = 1
  361:                DO J = 0, N2 - 1
  362:                   DO IJ = JS, JS + N2 - J - 1
  363:                      ARF( IJ ) = AP( IJP )
  364:                      IJP = IJP + 1
  365:                   END DO
  366:                   JS = JS + LDA + 1
  367:                END DO
  368: *
  369:             ELSE
  370: *
  371: *              N is odd, TRANSR = 'T', and UPLO = 'U'
  372: *
  373:                IJP = 0
  374:                JS = N2*LDA
  375:                DO J = 0, N1 - 1
  376:                   DO IJ = JS, JS + J
  377:                      ARF( IJ ) = AP( IJP )
  378:                      IJP = IJP + 1
  379:                   END DO
  380:                   JS = JS + LDA
  381:                END DO
  382:                DO I = 0, N1
  383:                   DO IJ = I, I + ( N1+I )*LDA, LDA
  384:                      ARF( IJ ) = AP( IJP )
  385:                      IJP = IJP + 1
  386:                   END DO
  387:                END DO
  388: *
  389:             END IF
  390: *
  391:          END IF
  392: *
  393:       ELSE
  394: *
  395: *        N is even
  396: *
  397:          IF( NORMALTRANSR ) THEN
  398: *
  399: *           N is even and TRANSR = 'N'
  400: *
  401:             IF( LOWER ) THEN
  402: *
  403: *              N is even, TRANSR = 'N', and UPLO = 'L'
  404: *
  405:                IJP = 0
  406:                JP = 0
  407:                DO J = 0, K - 1
  408:                   DO I = J, N - 1
  409:                      IJ = 1 + I + JP
  410:                      ARF( IJ ) = AP( IJP )
  411:                      IJP = IJP + 1
  412:                   END DO
  413:                   JP = JP + LDA
  414:                END DO
  415:                DO I = 0, K - 1
  416:                   DO J = I, K - 1
  417:                      IJ = I + J*LDA
  418:                      ARF( IJ ) = AP( IJP )
  419:                      IJP = IJP + 1
  420:                   END DO
  421:                END DO
  422: *
  423:             ELSE
  424: *
  425: *              N is even, TRANSR = 'N', and UPLO = 'U'
  426: *
  427:                IJP = 0
  428:                DO J = 0, K - 1
  429:                   IJ = K + 1 + J
  430:                   DO I = 0, J
  431:                      ARF( IJ ) = AP( IJP )
  432:                      IJP = IJP + 1
  433:                      IJ = IJ + LDA
  434:                   END DO
  435:                END DO
  436:                JS = 0
  437:                DO J = K, N - 1
  438:                   IJ = JS
  439:                   DO IJ = JS, JS + J
  440:                      ARF( IJ ) = AP( IJP )
  441:                      IJP = IJP + 1
  442:                   END DO
  443:                   JS = JS + LDA
  444:                END DO
  445: *
  446:             END IF
  447: *
  448:          ELSE
  449: *
  450: *           N is even and TRANSR = 'T'
  451: *
  452:             IF( LOWER ) THEN
  453: *
  454: *              N is even, TRANSR = 'T', and UPLO = 'L'
  455: *
  456:                IJP = 0
  457:                DO I = 0, K - 1
  458:                   DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
  459:                      ARF( IJ ) = AP( IJP )
  460:                      IJP = IJP + 1
  461:                   END DO
  462:                END DO
  463:                JS = 0
  464:                DO J = 0, K - 1
  465:                   DO IJ = JS, JS + K - J - 1
  466:                      ARF( IJ ) = AP( IJP )
  467:                      IJP = IJP + 1
  468:                   END DO
  469:                   JS = JS + LDA + 1
  470:                END DO
  471: *
  472:             ELSE
  473: *
  474: *              N is even, TRANSR = 'T', and UPLO = 'U'
  475: *
  476:                IJP = 0
  477:                JS = ( K+1 )*LDA
  478:                DO J = 0, K - 1
  479:                   DO IJ = JS, JS + J
  480:                      ARF( IJ ) = AP( IJP )
  481:                      IJP = IJP + 1
  482:                   END DO
  483:                   JS = JS + LDA
  484:                END DO
  485:                DO I = 0, K - 1
  486:                   DO IJ = I, I + ( K+I )*LDA, LDA
  487:                      ARF( IJ ) = AP( IJP )
  488:                      IJP = IJP + 1
  489:                   END DO
  490:                END DO
  491: *
  492:             END IF
  493: *
  494:          END IF
  495: *
  496:       END IF
  497: *
  498:       RETURN
  499: *
  500: *     End of DTPTTF
  501: *
  502:       END

CVSweb interface <joel.bertrand@systella.fr>