File:  [local] / rpl / lapack / lapack / dtprfs.f
Revision 1.7: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:40 2010 UTC (13 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DTPRFS( UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
    2:      $                   FERR, BERR, WORK, IWORK, INFO )
    3: *
    4: *  -- LAPACK routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH.
   10: *
   11: *     .. Scalar Arguments ..
   12:       CHARACTER          DIAG, TRANS, UPLO
   13:       INTEGER            INFO, LDB, LDX, N, NRHS
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IWORK( * )
   17:       DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
   18:      $                   WORK( * ), X( LDX, * )
   19: *     ..
   20: *
   21: *  Purpose
   22: *  =======
   23: *
   24: *  DTPRFS provides error bounds and backward error estimates for the
   25: *  solution to a system of linear equations with a triangular packed
   26: *  coefficient matrix.
   27: *
   28: *  The solution matrix X must be computed by DTPTRS or some other
   29: *  means before entering this routine.  DTPRFS does not do iterative
   30: *  refinement because doing so cannot improve the backward error.
   31: *
   32: *  Arguments
   33: *  =========
   34: *
   35: *  UPLO    (input) CHARACTER*1
   36: *          = 'U':  A is upper triangular;
   37: *          = 'L':  A is lower triangular.
   38: *
   39: *  TRANS   (input) CHARACTER*1
   40: *          Specifies the form of the system of equations:
   41: *          = 'N':  A * X = B  (No transpose)
   42: *          = 'T':  A**T * X = B  (Transpose)
   43: *          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
   44: *
   45: *  DIAG    (input) CHARACTER*1
   46: *          = 'N':  A is non-unit triangular;
   47: *          = 'U':  A is unit triangular.
   48: *
   49: *  N       (input) INTEGER
   50: *          The order of the matrix A.  N >= 0.
   51: *
   52: *  NRHS    (input) INTEGER
   53: *          The number of right hand sides, i.e., the number of columns
   54: *          of the matrices B and X.  NRHS >= 0.
   55: *
   56: *  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
   57: *          The upper or lower triangular matrix A, packed columnwise in
   58: *          a linear array.  The j-th column of A is stored in the array
   59: *          AP as follows:
   60: *          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
   61: *          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
   62: *          If DIAG = 'U', the diagonal elements of A are not referenced
   63: *          and are assumed to be 1.
   64: *
   65: *  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
   66: *          The right hand side matrix B.
   67: *
   68: *  LDB     (input) INTEGER
   69: *          The leading dimension of the array B.  LDB >= max(1,N).
   70: *
   71: *  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
   72: *          The solution matrix X.
   73: *
   74: *  LDX     (input) INTEGER
   75: *          The leading dimension of the array X.  LDX >= max(1,N).
   76: *
   77: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   78: *          The estimated forward error bound for each solution vector
   79: *          X(j) (the j-th column of the solution matrix X).
   80: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
   81: *          is an estimated upper bound for the magnitude of the largest
   82: *          element in (X(j) - XTRUE) divided by the magnitude of the
   83: *          largest element in X(j).  The estimate is as reliable as
   84: *          the estimate for RCOND, and is almost always a slight
   85: *          overestimate of the true error.
   86: *
   87: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
   88: *          The componentwise relative backward error of each solution
   89: *          vector X(j) (i.e., the smallest relative change in
   90: *          any element of A or B that makes X(j) an exact solution).
   91: *
   92: *  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)
   93: *
   94: *  IWORK   (workspace) INTEGER array, dimension (N)
   95: *
   96: *  INFO    (output) INTEGER
   97: *          = 0:  successful exit
   98: *          < 0:  if INFO = -i, the i-th argument had an illegal value
   99: *
  100: *  =====================================================================
  101: *
  102: *     .. Parameters ..
  103:       DOUBLE PRECISION   ZERO
  104:       PARAMETER          ( ZERO = 0.0D+0 )
  105:       DOUBLE PRECISION   ONE
  106:       PARAMETER          ( ONE = 1.0D+0 )
  107: *     ..
  108: *     .. Local Scalars ..
  109:       LOGICAL            NOTRAN, NOUNIT, UPPER
  110:       CHARACTER          TRANST
  111:       INTEGER            I, J, K, KASE, KC, NZ
  112:       DOUBLE PRECISION   EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  113: *     ..
  114: *     .. Local Arrays ..
  115:       INTEGER            ISAVE( 3 )
  116: *     ..
  117: *     .. External Subroutines ..
  118:       EXTERNAL           DAXPY, DCOPY, DLACN2, DTPMV, DTPSV, XERBLA
  119: *     ..
  120: *     .. Intrinsic Functions ..
  121:       INTRINSIC          ABS, MAX
  122: *     ..
  123: *     .. External Functions ..
  124:       LOGICAL            LSAME
  125:       DOUBLE PRECISION   DLAMCH
  126:       EXTERNAL           LSAME, DLAMCH
  127: *     ..
  128: *     .. Executable Statements ..
  129: *
  130: *     Test the input parameters.
  131: *
  132:       INFO = 0
  133:       UPPER = LSAME( UPLO, 'U' )
  134:       NOTRAN = LSAME( TRANS, 'N' )
  135:       NOUNIT = LSAME( DIAG, 'N' )
  136: *
  137:       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  138:          INFO = -1
  139:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  140:      $         LSAME( TRANS, 'C' ) ) THEN
  141:          INFO = -2
  142:       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  143:          INFO = -3
  144:       ELSE IF( N.LT.0 ) THEN
  145:          INFO = -4
  146:       ELSE IF( NRHS.LT.0 ) THEN
  147:          INFO = -5
  148:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  149:          INFO = -8
  150:       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  151:          INFO = -10
  152:       END IF
  153:       IF( INFO.NE.0 ) THEN
  154:          CALL XERBLA( 'DTPRFS', -INFO )
  155:          RETURN
  156:       END IF
  157: *
  158: *     Quick return if possible
  159: *
  160:       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  161:          DO 10 J = 1, NRHS
  162:             FERR( J ) = ZERO
  163:             BERR( J ) = ZERO
  164:    10    CONTINUE
  165:          RETURN
  166:       END IF
  167: *
  168:       IF( NOTRAN ) THEN
  169:          TRANST = 'T'
  170:       ELSE
  171:          TRANST = 'N'
  172:       END IF
  173: *
  174: *     NZ = maximum number of nonzero elements in each row of A, plus 1
  175: *
  176:       NZ = N + 1
  177:       EPS = DLAMCH( 'Epsilon' )
  178:       SAFMIN = DLAMCH( 'Safe minimum' )
  179:       SAFE1 = NZ*SAFMIN
  180:       SAFE2 = SAFE1 / EPS
  181: *
  182: *     Do for each right hand side
  183: *
  184:       DO 250 J = 1, NRHS
  185: *
  186: *        Compute residual R = B - op(A) * X,
  187: *        where op(A) = A or A', depending on TRANS.
  188: *
  189:          CALL DCOPY( N, X( 1, J ), 1, WORK( N+1 ), 1 )
  190:          CALL DTPMV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
  191:          CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK( N+1 ), 1 )
  192: *
  193: *        Compute componentwise relative backward error from formula
  194: *
  195: *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  196: *
  197: *        where abs(Z) is the componentwise absolute value of the matrix
  198: *        or vector Z.  If the i-th component of the denominator is less
  199: *        than SAFE2, then SAFE1 is added to the i-th components of the
  200: *        numerator and denominator before dividing.
  201: *
  202:          DO 20 I = 1, N
  203:             WORK( I ) = ABS( B( I, J ) )
  204:    20    CONTINUE
  205: *
  206:          IF( NOTRAN ) THEN
  207: *
  208: *           Compute abs(A)*abs(X) + abs(B).
  209: *
  210:             IF( UPPER ) THEN
  211:                KC = 1
  212:                IF( NOUNIT ) THEN
  213:                   DO 40 K = 1, N
  214:                      XK = ABS( X( K, J ) )
  215:                      DO 30 I = 1, K
  216:                         WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
  217:    30                CONTINUE
  218:                      KC = KC + K
  219:    40             CONTINUE
  220:                ELSE
  221:                   DO 60 K = 1, N
  222:                      XK = ABS( X( K, J ) )
  223:                      DO 50 I = 1, K - 1
  224:                         WORK( I ) = WORK( I ) + ABS( AP( KC+I-1 ) )*XK
  225:    50                CONTINUE
  226:                      WORK( K ) = WORK( K ) + XK
  227:                      KC = KC + K
  228:    60             CONTINUE
  229:                END IF
  230:             ELSE
  231:                KC = 1
  232:                IF( NOUNIT ) THEN
  233:                   DO 80 K = 1, N
  234:                      XK = ABS( X( K, J ) )
  235:                      DO 70 I = K, N
  236:                         WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
  237:    70                CONTINUE
  238:                      KC = KC + N - K + 1
  239:    80             CONTINUE
  240:                ELSE
  241:                   DO 100 K = 1, N
  242:                      XK = ABS( X( K, J ) )
  243:                      DO 90 I = K + 1, N
  244:                         WORK( I ) = WORK( I ) + ABS( AP( KC+I-K ) )*XK
  245:    90                CONTINUE
  246:                      WORK( K ) = WORK( K ) + XK
  247:                      KC = KC + N - K + 1
  248:   100             CONTINUE
  249:                END IF
  250:             END IF
  251:          ELSE
  252: *
  253: *           Compute abs(A')*abs(X) + abs(B).
  254: *
  255:             IF( UPPER ) THEN
  256:                KC = 1
  257:                IF( NOUNIT ) THEN
  258:                   DO 120 K = 1, N
  259:                      S = ZERO
  260:                      DO 110 I = 1, K
  261:                         S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  262:   110                CONTINUE
  263:                      WORK( K ) = WORK( K ) + S
  264:                      KC = KC + K
  265:   120             CONTINUE
  266:                ELSE
  267:                   DO 140 K = 1, N
  268:                      S = ABS( X( K, J ) )
  269:                      DO 130 I = 1, K - 1
  270:                         S = S + ABS( AP( KC+I-1 ) )*ABS( X( I, J ) )
  271:   130                CONTINUE
  272:                      WORK( K ) = WORK( K ) + S
  273:                      KC = KC + K
  274:   140             CONTINUE
  275:                END IF
  276:             ELSE
  277:                KC = 1
  278:                IF( NOUNIT ) THEN
  279:                   DO 160 K = 1, N
  280:                      S = ZERO
  281:                      DO 150 I = K, N
  282:                         S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  283:   150                CONTINUE
  284:                      WORK( K ) = WORK( K ) + S
  285:                      KC = KC + N - K + 1
  286:   160             CONTINUE
  287:                ELSE
  288:                   DO 180 K = 1, N
  289:                      S = ABS( X( K, J ) )
  290:                      DO 170 I = K + 1, N
  291:                         S = S + ABS( AP( KC+I-K ) )*ABS( X( I, J ) )
  292:   170                CONTINUE
  293:                      WORK( K ) = WORK( K ) + S
  294:                      KC = KC + N - K + 1
  295:   180             CONTINUE
  296:                END IF
  297:             END IF
  298:          END IF
  299:          S = ZERO
  300:          DO 190 I = 1, N
  301:             IF( WORK( I ).GT.SAFE2 ) THEN
  302:                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  303:             ELSE
  304:                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  305:      $             ( WORK( I )+SAFE1 ) )
  306:             END IF
  307:   190    CONTINUE
  308:          BERR( J ) = S
  309: *
  310: *        Bound error from formula
  311: *
  312: *        norm(X - XTRUE) / norm(X) .le. FERR =
  313: *        norm( abs(inv(op(A)))*
  314: *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  315: *
  316: *        where
  317: *          norm(Z) is the magnitude of the largest component of Z
  318: *          inv(op(A)) is the inverse of op(A)
  319: *          abs(Z) is the componentwise absolute value of the matrix or
  320: *             vector Z
  321: *          NZ is the maximum number of nonzeros in any row of A, plus 1
  322: *          EPS is machine epsilon
  323: *
  324: *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  325: *        is incremented by SAFE1 if the i-th component of
  326: *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  327: *
  328: *        Use DLACN2 to estimate the infinity-norm of the matrix
  329: *           inv(op(A)) * diag(W),
  330: *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  331: *
  332:          DO 200 I = 1, N
  333:             IF( WORK( I ).GT.SAFE2 ) THEN
  334:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  335:             ELSE
  336:                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  337:             END IF
  338:   200    CONTINUE
  339: *
  340:          KASE = 0
  341:   210    CONTINUE
  342:          CALL DLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  343:      $                KASE, ISAVE )
  344:          IF( KASE.NE.0 ) THEN
  345:             IF( KASE.EQ.1 ) THEN
  346: *
  347: *              Multiply by diag(W)*inv(op(A)').
  348: *
  349:                CALL DTPSV( UPLO, TRANST, DIAG, N, AP, WORK( N+1 ), 1 )
  350:                DO 220 I = 1, N
  351:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  352:   220          CONTINUE
  353:             ELSE
  354: *
  355: *              Multiply by inv(op(A))*diag(W).
  356: *
  357:                DO 230 I = 1, N
  358:                   WORK( N+I ) = WORK( I )*WORK( N+I )
  359:   230          CONTINUE
  360:                CALL DTPSV( UPLO, TRANS, DIAG, N, AP, WORK( N+1 ), 1 )
  361:             END IF
  362:             GO TO 210
  363:          END IF
  364: *
  365: *        Normalize error.
  366: *
  367:          LSTRES = ZERO
  368:          DO 240 I = 1, N
  369:             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  370:   240    CONTINUE
  371:          IF( LSTRES.NE.ZERO )
  372:      $      FERR( J ) = FERR( J ) / LSTRES
  373: *
  374:   250 CONTINUE
  375: *
  376:       RETURN
  377: *
  378: *     End of DTPRFS
  379: *
  380:       END

CVSweb interface <joel.bertrand@systella.fr>