Annotation of rpl/lapack/lapack/dtpqrt2.f, revision 1.5

1.3       bertrand    1: *> \brief \b DTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
1.1       bertrand    2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DTPQRT2 + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpqrt2.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpqrt2.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpqrt2.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
                     22: * 
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER   INFO, LDA, LDB, LDT, N, M, L
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
                     28: *       ..
                     29: *  
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DTPQRT2 computes a QR factorization of a real "triangular-pentagonal"
                     37: *> matrix C, which is composed of a triangular block A and pentagonal block B, 
                     38: *> using the compact WY representation for Q.
                     39: *> \endverbatim
                     40: *
                     41: *  Arguments:
                     42: *  ==========
                     43: *
                     44: *> \param[in] M
                     45: *> \verbatim
                     46: *>          M is INTEGER
                     47: *>          The total number of rows of the matrix B.  
                     48: *>          M >= 0.
                     49: *> \endverbatim
                     50: *>
                     51: *> \param[in] N
                     52: *> \verbatim
                     53: *>          N is INTEGER
                     54: *>          The number of columns of the matrix B, and the order of
                     55: *>          the triangular matrix A.
                     56: *>          N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in] L
                     60: *> \verbatim
                     61: *>          L is INTEGER
                     62: *>          The number of rows of the upper trapezoidal part of B.  
                     63: *>          MIN(M,N) >= L >= 0.  See Further Details.
                     64: *> \endverbatim
                     65: *>
                     66: *> \param[in,out] A
                     67: *> \verbatim
                     68: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     69: *>          On entry, the upper triangular N-by-N matrix A.
                     70: *>          On exit, the elements on and above the diagonal of the array
                     71: *>          contain the upper triangular matrix R.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in] LDA
                     75: *> \verbatim
                     76: *>          LDA is INTEGER
                     77: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in,out] B
                     81: *> \verbatim
                     82: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                     83: *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows 
                     84: *>          are rectangular, and the last L rows are upper trapezoidal.
                     85: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] LDB
                     89: *> \verbatim
                     90: *>          LDB is INTEGER
                     91: *>          The leading dimension of the array B.  LDB >= max(1,M).
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] T
                     95: *> \verbatim
                     96: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     97: *>          The N-by-N upper triangular factor T of the block reflector.
                     98: *>          See Further Details.
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[in] LDT
                    102: *> \verbatim
                    103: *>          LDT is INTEGER
                    104: *>          The leading dimension of the array T.  LDT >= max(1,N)
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[out] INFO
                    108: *> \verbatim
                    109: *>          INFO is INTEGER
                    110: *>          = 0: successful exit
                    111: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                    112: *> \endverbatim
                    113: *
                    114: *  Authors:
                    115: *  ========
                    116: *
                    117: *> \author Univ. of Tennessee 
                    118: *> \author Univ. of California Berkeley 
                    119: *> \author Univ. of Colorado Denver 
                    120: *> \author NAG Ltd. 
                    121: *
1.3       bertrand  122: *> \date September 2012
1.1       bertrand  123: *
                    124: *> \ingroup doubleOTHERcomputational
                    125: *
                    126: *> \par Further Details:
                    127: *  =====================
                    128: *>
                    129: *> \verbatim
                    130: *>
                    131: *>  The input matrix C is a (N+M)-by-N matrix  
                    132: *>
                    133: *>               C = [ A ]
                    134: *>                   [ B ]        
                    135: *>
                    136: *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
                    137: *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
                    138: *>  upper trapezoidal matrix B2:
                    139: *>
                    140: *>               B = [ B1 ]  <- (M-L)-by-N rectangular
                    141: *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
                    142: *>
                    143: *>  The upper trapezoidal matrix B2 consists of the first L rows of a
                    144: *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
                    145: *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.  
                    146: *>
                    147: *>  The matrix W stores the elementary reflectors H(i) in the i-th column
                    148: *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
                    149: *>
                    150: *>               C = [ A ]  <- upper triangular N-by-N
                    151: *>                   [ B ]  <- M-by-N pentagonal
                    152: *>
                    153: *>  so that W can be represented as
                    154: *>
                    155: *>               W = [ I ]  <- identity, N-by-N
                    156: *>                   [ V ]  <- M-by-N, same form as B.
                    157: *>
                    158: *>  Thus, all of information needed for W is contained on exit in B, which
                    159: *>  we call V above.  Note that V has the same form as B; that is, 
                    160: *>
                    161: *>               V = [ V1 ] <- (M-L)-by-N rectangular
                    162: *>                   [ V2 ] <-     L-by-N upper trapezoidal.
                    163: *>
                    164: *>  The columns of V represent the vectors which define the H(i)'s.  
                    165: *>  The (M+N)-by-(M+N) block reflector H is then given by
                    166: *>
                    167: *>               H = I - W * T * W**T
                    168: *>
                    169: *>  where W^H is the conjugate transpose of W and T is the upper triangular
                    170: *>  factor of the block reflector.
                    171: *> \endverbatim
                    172: *>
                    173: *  =====================================================================
                    174:       SUBROUTINE DTPQRT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
                    175: *
1.3       bertrand  176: *  -- LAPACK computational routine (version 3.4.2) --
1.1       bertrand  177: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    178: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.3       bertrand  179: *     September 2012
1.1       bertrand  180: *
                    181: *     .. Scalar Arguments ..
                    182:       INTEGER   INFO, LDA, LDB, LDT, N, M, L
                    183: *     ..
                    184: *     .. Array Arguments ..
                    185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
                    186: *     ..
                    187: *
                    188: *  =====================================================================
                    189: *
                    190: *     .. Parameters ..
                    191:       DOUBLE PRECISION  ONE, ZERO
                    192:       PARAMETER( ONE = 1.0, ZERO = 0.0 )
                    193: *     ..
                    194: *     .. Local Scalars ..
                    195:       INTEGER   I, J, P, MP, NP
                    196:       DOUBLE PRECISION   ALPHA
                    197: *     ..
                    198: *     .. External Subroutines ..
                    199:       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
                    200: *     ..
                    201: *     .. Intrinsic Functions ..
                    202:       INTRINSIC MAX, MIN
                    203: *     ..
                    204: *     .. Executable Statements ..
                    205: *
                    206: *     Test the input arguments
                    207: *
                    208:       INFO = 0
                    209:       IF( M.LT.0 ) THEN
                    210:          INFO = -1
                    211:       ELSE IF( N.LT.0 ) THEN
                    212:          INFO = -2
                    213:       ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
                    214:          INFO = -3
                    215:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    216:          INFO = -5
                    217:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
                    218:          INFO = -7
                    219:       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
                    220:          INFO = -9
                    221:       END IF
                    222:       IF( INFO.NE.0 ) THEN
                    223:          CALL XERBLA( 'DTPQRT2', -INFO )
                    224:          RETURN
                    225:       END IF
                    226: *
                    227: *     Quick return if possible
                    228: *
                    229:       IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
                    230: *      
                    231:       DO I = 1, N
                    232: *
                    233: *        Generate elementary reflector H(I) to annihilate B(:,I)
                    234: *
                    235:          P = M-L+MIN( L, I )
                    236:          CALL DLARFG( P+1, A( I, I ), B( 1, I ), 1, T( I, 1 ) )
                    237:          IF( I.LT.N ) THEN
                    238: *
                    239: *           W(1:N-I) := C(I:M,I+1:N)^H * C(I:M,I) [use W = T(:,N)]
                    240: *
                    241:             DO J = 1, N-I
                    242:                T( J, N ) = (A( I, I+J ))
                    243:             END DO
                    244:             CALL DGEMV( 'T', P, N-I, ONE, B( 1, I+1 ), LDB, 
                    245:      $                  B( 1, I ), 1, ONE, T( 1, N ), 1 )
                    246: *
                    247: *           C(I:M,I+1:N) = C(I:m,I+1:N) + alpha*C(I:M,I)*W(1:N-1)^H
                    248: *
                    249:             ALPHA = -(T( I, 1 ))            
                    250:             DO J = 1, N-I
                    251:                A( I, I+J ) = A( I, I+J ) + ALPHA*(T( J, N ))
                    252:             END DO
                    253:             CALL DGER( P, N-I, ALPHA, B( 1, I ), 1, 
                    254:      $           T( 1, N ), 1, B( 1, I+1 ), LDB )
                    255:          END IF
                    256:       END DO
                    257: *
                    258:       DO I = 2, N
                    259: *
                    260: *        T(1:I-1,I) := C(I:M,1:I-1)^H * (alpha * C(I:M,I))
                    261: *
                    262:          ALPHA = -T( I, 1 )
                    263: 
                    264:          DO J = 1, I-1
                    265:             T( J, I ) = ZERO
                    266:          END DO
                    267:          P = MIN( I-1, L )
                    268:          MP = MIN( M-L+1, M )
                    269:          NP = MIN( P+1, N )
                    270: *
                    271: *        Triangular part of B2
                    272: *
                    273:          DO J = 1, P
                    274:             T( J, I ) = ALPHA*B( M-L+J, I )
                    275:          END DO
                    276:          CALL DTRMV( 'U', 'T', 'N', P, B( MP, 1 ), LDB,
                    277:      $               T( 1, I ), 1 )
                    278: *
                    279: *        Rectangular part of B2
                    280: *
                    281:          CALL DGEMV( 'T', L, I-1-P, ALPHA, B( MP, NP ), LDB, 
                    282:      $               B( MP, I ), 1, ZERO, T( NP, I ), 1 )
                    283: *
                    284: *        B1
                    285: *
                    286:          CALL DGEMV( 'T', M-L, I-1, ALPHA, B, LDB, B( 1, I ), 1, 
                    287:      $               ONE, T( 1, I ), 1 )         
                    288: *
                    289: *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(1:I-1,I)
                    290: *
                    291:          CALL DTRMV( 'U', 'N', 'N', I-1, T, LDT, T( 1, I ), 1 )
                    292: *
                    293: *        T(I,I) = tau(I)
                    294: *
                    295:          T( I, I ) = T( I, 1 )
                    296:          T( I, 1 ) = ZERO
                    297:       END DO
                    298:    
                    299: *
                    300: *     End of DTPQRT2
                    301: *
                    302:       END

CVSweb interface <joel.bertrand@systella.fr>