Annotation of rpl/lapack/lapack/dtpqrt.f, revision 1.6

1.1       bertrand    1: *> \brief \b DTPQRT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DTPQRT + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpqrt.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpqrt.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpqrt.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
                     22: *                          INFO )
                     23: * 
                     24: *       .. Scalar Arguments ..
                     25: *       INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
                     29: *       ..
                     30: *  
                     31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
                     37: *> DTPQRT computes a blocked QR factorization of a real 
                     38: *> "triangular-pentagonal" matrix C, which is composed of a 
                     39: *> triangular block A and pentagonal block B, using the compact 
                     40: *> WY representation for Q.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
                     49: *>          The number of rows of the matrix B.  
                     50: *>          M >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The number of columns of the matrix B, and the order of the
                     57: *>          triangular matrix A.
                     58: *>          N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] L
                     62: *> \verbatim
                     63: *>          L is INTEGER
                     64: *>          The number of rows of the upper trapezoidal part of B.
                     65: *>          MIN(M,N) >= L >= 0.  See Further Details.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] NB
                     69: *> \verbatim
                     70: *>          NB is INTEGER
                     71: *>          The block size to be used in the blocked QR.  N >= NB >= 1.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] A
                     75: *> \verbatim
                     76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     77: *>          On entry, the upper triangular N-by-N matrix A.
                     78: *>          On exit, the elements on and above the diagonal of the array
                     79: *>          contain the upper triangular matrix R.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                     91: *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows 
                     92: *>          are rectangular, and the last L rows are upper trapezoidal.
                     93: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDB
                     97: *> \verbatim
                     98: *>          LDB is INTEGER
                     99: *>          The leading dimension of the array B.  LDB >= max(1,M).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] T
                    103: *> \verbatim
                    104: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                    105: *>          The upper triangular block reflectors stored in compact form
                    106: *>          as a sequence of upper triangular blocks.  See Further Details.
                    107: *> \endverbatim
                    108: *>          
                    109: *> \param[in] LDT
                    110: *> \verbatim
                    111: *>          LDT is INTEGER
                    112: *>          The leading dimension of the array T.  LDT >= NB.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[out] WORK
                    116: *> \verbatim
                    117: *>          WORK is DOUBLE PRECISION array, dimension (NB*N)
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[out] INFO
                    121: *> \verbatim
                    122: *>          INFO is INTEGER
                    123: *>          = 0:  successful exit
                    124: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    125: *> \endverbatim
                    126: *
                    127: *  Authors:
                    128: *  ========
                    129: *
                    130: *> \author Univ. of Tennessee 
                    131: *> \author Univ. of California Berkeley 
                    132: *> \author Univ. of Colorado Denver 
                    133: *> \author NAG Ltd. 
                    134: *
1.4       bertrand  135: *> \date November 2013
1.1       bertrand  136: *
                    137: *> \ingroup doubleOTHERcomputational
                    138: *
                    139: *> \par Further Details:
                    140: *  =====================
                    141: *>
                    142: *> \verbatim
                    143: *>
                    144: *>  The input matrix C is a (N+M)-by-N matrix  
                    145: *>
                    146: *>               C = [ A ]
                    147: *>                   [ B ]        
                    148: *>
                    149: *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
                    150: *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
                    151: *>  upper trapezoidal matrix B2:
                    152: *>
                    153: *>               B = [ B1 ]  <- (M-L)-by-N rectangular
                    154: *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
                    155: *>
                    156: *>  The upper trapezoidal matrix B2 consists of the first L rows of a
                    157: *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0, 
                    158: *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.  
                    159: *>
                    160: *>  The matrix W stores the elementary reflectors H(i) in the i-th column
                    161: *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
                    162: *>
                    163: *>               C = [ A ]  <- upper triangular N-by-N
                    164: *>                   [ B ]  <- M-by-N pentagonal
                    165: *>
                    166: *>  so that W can be represented as
                    167: *>
                    168: *>               W = [ I ]  <- identity, N-by-N
                    169: *>                   [ V ]  <- M-by-N, same form as B.
                    170: *>
                    171: *>  Thus, all of information needed for W is contained on exit in B, which
                    172: *>  we call V above.  Note that V has the same form as B; that is, 
                    173: *>
                    174: *>               V = [ V1 ] <- (M-L)-by-N rectangular
                    175: *>                   [ V2 ] <-     L-by-N upper trapezoidal.
                    176: *>
                    177: *>  The columns of V represent the vectors which define the H(i)'s.  
                    178: *>
                    179: *>  The number of blocks is B = ceiling(N/NB), where each
                    180: *>  block is of order NB except for the last block, which is of order 
                    181: *>  IB = N - (B-1)*NB.  For each of the B blocks, a upper triangular block
                    182: *>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB 
                    183: *>  for the last block) T's are stored in the NB-by-N matrix T as
                    184: *>
                    185: *>               T = [T1 T2 ... TB].
                    186: *> \endverbatim
                    187: *>
                    188: *  =====================================================================
                    189:       SUBROUTINE DTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
                    190:      $                   INFO )
                    191: *
1.4       bertrand  192: *  -- LAPACK computational routine (version 3.5.0) --
1.1       bertrand  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.4       bertrand  195: *     November 2013
1.1       bertrand  196: *
                    197: *     .. Scalar Arguments ..
                    198:       INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
                    199: *     ..
                    200: *     .. Array Arguments ..
                    201:       DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
                    202: *     ..
                    203: *
                    204: * =====================================================================
                    205: *
                    206: *     ..
                    207: *     .. Local Scalars ..
                    208:       INTEGER    I, IB, LB, MB, IINFO
                    209: *     ..
                    210: *     .. External Subroutines ..
                    211:       EXTERNAL   DTPQRT2, DTPRFB, XERBLA
                    212: *     ..
                    213: *     .. Executable Statements ..
                    214: *
                    215: *     Test the input arguments
                    216: *
                    217:       INFO = 0
                    218:       IF( M.LT.0 ) THEN
                    219:          INFO = -1
                    220:       ELSE IF( N.LT.0 ) THEN
                    221:          INFO = -2
1.4       bertrand  222:       ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
1.1       bertrand  223:          INFO = -3
1.4       bertrand  224:       ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN
1.1       bertrand  225:          INFO = -4
                    226:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    227:          INFO = -6
                    228:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
                    229:          INFO = -8
                    230:       ELSE IF( LDT.LT.NB ) THEN
                    231:          INFO = -10
                    232:       END IF
                    233:       IF( INFO.NE.0 ) THEN
                    234:          CALL XERBLA( 'DTPQRT', -INFO )
                    235:          RETURN
                    236:       END IF
                    237: *
                    238: *     Quick return if possible
                    239: *
                    240:       IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
                    241: *
                    242:       DO I = 1, N, NB
                    243: *     
                    244: *     Compute the QR factorization of the current block
                    245: *
                    246:          IB = MIN( N-I+1, NB )
                    247:          MB = MIN( M-L+I+IB-1, M )
                    248:          IF( I.GE.L ) THEN
                    249:             LB = 0
                    250:          ELSE
                    251:             LB = MB-M+L-I+1
                    252:          END IF
                    253: *
                    254:          CALL DTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB, 
                    255:      $                 T(1, I ), LDT, IINFO )
                    256: *
                    257: *     Update by applying H**T to B(:,I+IB:N) from the left
                    258: *
                    259:          IF( I+IB.LE.N ) THEN
                    260:             CALL DTPRFB( 'L', 'T', 'F', 'C', MB, N-I-IB+1, IB, LB,
                    261:      $                    B( 1, I ), LDB, T( 1, I ), LDT, 
                    262:      $                    A( I, I+IB ), LDA, B( 1, I+IB ), LDB, 
                    263:      $                    WORK, IB )
                    264:          END IF
                    265:       END DO
                    266:       RETURN
                    267: *     
                    268: *     End of DTPQRT
                    269: *
                    270:       END

CVSweb interface <joel.bertrand@systella.fr>