Annotation of rpl/lapack/lapack/dtpqrt.f, revision 1.10

1.1       bertrand    1: *> \brief \b DTPQRT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.7       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.7       bertrand    9: *> Download DTPQRT + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpqrt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpqrt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpqrt.f">
1.1       bertrand   15: *> [TXT]</a>
1.7       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
                     22: *                          INFO )
1.7       bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
                     29: *       ..
1.7       bertrand   30: *
1.1       bertrand   31: *
                     32: *> \par Purpose:
                     33: *  =============
                     34: *>
                     35: *> \verbatim
                     36: *>
1.7       bertrand   37: *> DTPQRT computes a blocked QR factorization of a real
                     38: *> "triangular-pentagonal" matrix C, which is composed of a
                     39: *> triangular block A and pentagonal block B, using the compact
1.1       bertrand   40: *> WY representation for Q.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
1.7       bertrand   49: *>          The number of rows of the matrix B.
1.1       bertrand   50: *>          M >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The number of columns of the matrix B, and the order of the
                     57: *>          triangular matrix A.
                     58: *>          N >= 0.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] L
                     62: *> \verbatim
                     63: *>          L is INTEGER
                     64: *>          The number of rows of the upper trapezoidal part of B.
                     65: *>          MIN(M,N) >= L >= 0.  See Further Details.
                     66: *> \endverbatim
                     67: *>
                     68: *> \param[in] NB
                     69: *> \verbatim
                     70: *>          NB is INTEGER
                     71: *>          The block size to be used in the blocked QR.  N >= NB >= 1.
                     72: *> \endverbatim
                     73: *>
                     74: *> \param[in,out] A
                     75: *> \verbatim
                     76: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     77: *>          On entry, the upper triangular N-by-N matrix A.
                     78: *>          On exit, the elements on and above the diagonal of the array
                     79: *>          contain the upper triangular matrix R.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDA
                     83: *> \verbatim
                     84: *>          LDA is INTEGER
                     85: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in,out] B
                     89: *> \verbatim
                     90: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
1.7       bertrand   91: *>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
1.1       bertrand   92: *>          are rectangular, and the last L rows are upper trapezoidal.
                     93: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LDB
                     97: *> \verbatim
                     98: *>          LDB is INTEGER
                     99: *>          The leading dimension of the array B.  LDB >= max(1,M).
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] T
                    103: *> \verbatim
                    104: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                    105: *>          The upper triangular block reflectors stored in compact form
                    106: *>          as a sequence of upper triangular blocks.  See Further Details.
                    107: *> \endverbatim
1.7       bertrand  108: *>
1.1       bertrand  109: *> \param[in] LDT
                    110: *> \verbatim
                    111: *>          LDT is INTEGER
                    112: *>          The leading dimension of the array T.  LDT >= NB.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[out] WORK
                    116: *> \verbatim
                    117: *>          WORK is DOUBLE PRECISION array, dimension (NB*N)
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[out] INFO
                    121: *> \verbatim
                    122: *>          INFO is INTEGER
                    123: *>          = 0:  successful exit
                    124: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    125: *> \endverbatim
                    126: *
                    127: *  Authors:
                    128: *  ========
                    129: *
1.7       bertrand  130: *> \author Univ. of Tennessee
                    131: *> \author Univ. of California Berkeley
                    132: *> \author Univ. of Colorado Denver
                    133: *> \author NAG Ltd.
1.1       bertrand  134: *
                    135: *> \ingroup doubleOTHERcomputational
                    136: *
                    137: *> \par Further Details:
                    138: *  =====================
                    139: *>
                    140: *> \verbatim
                    141: *>
1.7       bertrand  142: *>  The input matrix C is a (N+M)-by-N matrix
1.1       bertrand  143: *>
                    144: *>               C = [ A ]
1.7       bertrand  145: *>                   [ B ]
1.1       bertrand  146: *>
                    147: *>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
                    148: *>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
                    149: *>  upper trapezoidal matrix B2:
                    150: *>
                    151: *>               B = [ B1 ]  <- (M-L)-by-N rectangular
                    152: *>                   [ B2 ]  <-     L-by-N upper trapezoidal.
                    153: *>
                    154: *>  The upper trapezoidal matrix B2 consists of the first L rows of a
1.7       bertrand  155: *>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
                    156: *>  B is rectangular M-by-N; if M=L=N, B is upper triangular.
1.1       bertrand  157: *>
                    158: *>  The matrix W stores the elementary reflectors H(i) in the i-th column
                    159: *>  below the diagonal (of A) in the (N+M)-by-N input matrix C
                    160: *>
                    161: *>               C = [ A ]  <- upper triangular N-by-N
                    162: *>                   [ B ]  <- M-by-N pentagonal
                    163: *>
                    164: *>  so that W can be represented as
                    165: *>
                    166: *>               W = [ I ]  <- identity, N-by-N
                    167: *>                   [ V ]  <- M-by-N, same form as B.
                    168: *>
                    169: *>  Thus, all of information needed for W is contained on exit in B, which
1.7       bertrand  170: *>  we call V above.  Note that V has the same form as B; that is,
1.1       bertrand  171: *>
                    172: *>               V = [ V1 ] <- (M-L)-by-N rectangular
                    173: *>                   [ V2 ] <-     L-by-N upper trapezoidal.
                    174: *>
1.7       bertrand  175: *>  The columns of V represent the vectors which define the H(i)'s.
1.1       bertrand  176: *>
                    177: *>  The number of blocks is B = ceiling(N/NB), where each
1.7       bertrand  178: *>  block is of order NB except for the last block, which is of order
1.1       bertrand  179: *>  IB = N - (B-1)*NB.  For each of the B blocks, a upper triangular block
1.7       bertrand  180: *>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
1.1       bertrand  181: *>  for the last block) T's are stored in the NB-by-N matrix T as
                    182: *>
                    183: *>               T = [T1 T2 ... TB].
                    184: *> \endverbatim
                    185: *>
                    186: *  =====================================================================
                    187:       SUBROUTINE DTPQRT( M, N, L, NB, A, LDA, B, LDB, T, LDT, WORK,
                    188:      $                   INFO )
                    189: *
1.10    ! bertrand  190: *  -- LAPACK computational routine --
1.1       bertrand  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    193: *
                    194: *     .. Scalar Arguments ..
                    195:       INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
                    196: *     ..
                    197: *     .. Array Arguments ..
                    198:       DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
                    199: *     ..
                    200: *
                    201: * =====================================================================
                    202: *
                    203: *     ..
                    204: *     .. Local Scalars ..
                    205:       INTEGER    I, IB, LB, MB, IINFO
                    206: *     ..
                    207: *     .. External Subroutines ..
                    208:       EXTERNAL   DTPQRT2, DTPRFB, XERBLA
                    209: *     ..
                    210: *     .. Executable Statements ..
                    211: *
                    212: *     Test the input arguments
                    213: *
                    214:       INFO = 0
                    215:       IF( M.LT.0 ) THEN
                    216:          INFO = -1
                    217:       ELSE IF( N.LT.0 ) THEN
                    218:          INFO = -2
1.4       bertrand  219:       ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
1.1       bertrand  220:          INFO = -3
1.4       bertrand  221:       ELSE IF( NB.LT.1 .OR. (NB.GT.N .AND. N.GT.0)) THEN
1.1       bertrand  222:          INFO = -4
                    223:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    224:          INFO = -6
                    225:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
                    226:          INFO = -8
                    227:       ELSE IF( LDT.LT.NB ) THEN
                    228:          INFO = -10
                    229:       END IF
                    230:       IF( INFO.NE.0 ) THEN
                    231:          CALL XERBLA( 'DTPQRT', -INFO )
                    232:          RETURN
                    233:       END IF
                    234: *
                    235: *     Quick return if possible
                    236: *
                    237:       IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
                    238: *
                    239:       DO I = 1, N, NB
1.7       bertrand  240: *
1.1       bertrand  241: *     Compute the QR factorization of the current block
                    242: *
                    243:          IB = MIN( N-I+1, NB )
                    244:          MB = MIN( M-L+I+IB-1, M )
                    245:          IF( I.GE.L ) THEN
                    246:             LB = 0
                    247:          ELSE
                    248:             LB = MB-M+L-I+1
                    249:          END IF
                    250: *
1.7       bertrand  251:          CALL DTPQRT2( MB, IB, LB, A(I,I), LDA, B( 1, I ), LDB,
1.1       bertrand  252:      $                 T(1, I ), LDT, IINFO )
                    253: *
                    254: *     Update by applying H**T to B(:,I+IB:N) from the left
                    255: *
                    256:          IF( I+IB.LE.N ) THEN
                    257:             CALL DTPRFB( 'L', 'T', 'F', 'C', MB, N-I-IB+1, IB, LB,
1.7       bertrand  258:      $                    B( 1, I ), LDB, T( 1, I ), LDT,
                    259:      $                    A( I, I+IB ), LDA, B( 1, I+IB ), LDB,
1.1       bertrand  260:      $                    WORK, IB )
                    261:          END IF
                    262:       END DO
                    263:       RETURN
1.7       bertrand  264: *
1.1       bertrand  265: *     End of DTPQRT
                    266: *
                    267:       END

CVSweb interface <joel.bertrand@systella.fr>