File:  [local] / rpl / lapack / lapack / dtpmqrt.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Mon Jan 27 09:24:35 2014 UTC (10 years, 3 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.5.0.

    1: *> \brief \b DTPMQRT
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DTPMQRT + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpmqrt.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpmqrt.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpmqrt.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
   22: *                           A, LDA, B, LDB, WORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER SIDE, TRANS
   26: *       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ), 
   30: *      $                   T( LDT, * ), WORK( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DTPMQRT applies a real orthogonal matrix Q obtained from a 
   40: *> "triangular-pentagonal" real block reflector H to a general
   41: *> real matrix C, which consists of two blocks A and B.
   42: *> \endverbatim
   43: *
   44: *  Arguments:
   45: *  ==========
   46: *
   47: *> \param[in] SIDE
   48: *> \verbatim
   49: *>          SIDE is CHARACTER*1
   50: *>          = 'L': apply Q or Q**T from the Left;
   51: *>          = 'R': apply Q or Q**T from the Right.
   52: *> \endverbatim
   53: *>
   54: *> \param[in] TRANS
   55: *> \verbatim
   56: *>          TRANS is CHARACTER*1
   57: *>          = 'N':  No transpose, apply Q;
   58: *>          = 'C':  Transpose, apply Q**T.
   59: *> \endverbatim
   60: *>
   61: *> \param[in] M
   62: *> \verbatim
   63: *>          M is INTEGER
   64: *>          The number of rows of the matrix B. M >= 0.
   65: *> \endverbatim
   66: *>
   67: *> \param[in] N
   68: *> \verbatim
   69: *>          N is INTEGER
   70: *>          The number of columns of the matrix B. N >= 0.
   71: *> \endverbatim
   72: *> 
   73: *> \param[in] K
   74: *> \verbatim
   75: *>          K is INTEGER
   76: *>          The number of elementary reflectors whose product defines
   77: *>          the matrix Q.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] L
   81: *> \verbatim
   82: *>          L is INTEGER
   83: *>          The order of the trapezoidal part of V.  
   84: *>          K >= L >= 0.  See Further Details.
   85: *> \endverbatim
   86: *>
   87: *> \param[in] NB
   88: *> \verbatim
   89: *>          NB is INTEGER
   90: *>          The block size used for the storage of T.  K >= NB >= 1.
   91: *>          This must be the same value of NB used to generate T
   92: *>          in CTPQRT.
   93: *> \endverbatim
   94: *>
   95: *> \param[in] V
   96: *> \verbatim
   97: *>          V is DOUBLE PRECISION array, dimension (LDA,K)
   98: *>          The i-th column must contain the vector which defines the
   99: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
  100: *>          CTPQRT in B.  See Further Details.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] LDV
  104: *> \verbatim
  105: *>          LDV is INTEGER
  106: *>          The leading dimension of the array V.
  107: *>          If SIDE = 'L', LDV >= max(1,M);
  108: *>          if SIDE = 'R', LDV >= max(1,N).
  109: *> \endverbatim
  110: *>
  111: *> \param[in] T
  112: *> \verbatim
  113: *>          T is DOUBLE PRECISION array, dimension (LDT,K)
  114: *>          The upper triangular factors of the block reflectors
  115: *>          as returned by CTPQRT, stored as a NB-by-K matrix.
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDT
  119: *> \verbatim
  120: *>          LDT is INTEGER
  121: *>          The leading dimension of the array T.  LDT >= NB.
  122: *> \endverbatim
  123: *>
  124: *> \param[in,out] A
  125: *> \verbatim
  126: *>          A is DOUBLE PRECISION array, dimension
  127: *>          (LDA,N) if SIDE = 'L' or 
  128: *>          (LDA,K) if SIDE = 'R'
  129: *>          On entry, the K-by-N or M-by-K matrix A.
  130: *>          On exit, A is overwritten by the corresponding block of 
  131: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
  132: *> \endverbatim
  133: *>
  134: *> \param[in] LDA
  135: *> \verbatim
  136: *>          LDA is INTEGER
  137: *>          The leading dimension of the array A. 
  138: *>          If SIDE = 'L', LDC >= max(1,K);
  139: *>          If SIDE = 'R', LDC >= max(1,M). 
  140: *> \endverbatim
  141: *>
  142: *> \param[in,out] B
  143: *> \verbatim
  144: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
  145: *>          On entry, the M-by-N matrix B.
  146: *>          On exit, B is overwritten by the corresponding block of
  147: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
  148: *> \endverbatim
  149: *>
  150: *> \param[in] LDB
  151: *> \verbatim
  152: *>          LDB is INTEGER
  153: *>          The leading dimension of the array B. 
  154: *>          LDB >= max(1,M).
  155: *> \endverbatim
  156: *>
  157: *> \param[out] WORK
  158: *> \verbatim
  159: *>          WORK is DOUBLE PRECISION array. The dimension of WORK is
  160: *>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
  161: *> \endverbatim
  162: *>
  163: *> \param[out] INFO
  164: *> \verbatim
  165: *>          INFO is INTEGER
  166: *>          = 0:  successful exit
  167: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
  168: *> \endverbatim
  169: *
  170: *  Authors:
  171: *  ========
  172: *
  173: *> \author Univ. of Tennessee 
  174: *> \author Univ. of California Berkeley 
  175: *> \author Univ. of Colorado Denver 
  176: *> \author NAG Ltd. 
  177: *
  178: *> \date November 2013
  179: *
  180: *> \ingroup doubleOTHERcomputational
  181: *
  182: *> \par Further Details:
  183: *  =====================
  184: *>
  185: *> \verbatim
  186: *>
  187: *>  The columns of the pentagonal matrix V contain the elementary reflectors
  188: *>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a 
  189: *>  trapezoidal block V2:
  190: *>
  191: *>        V = [V1]
  192: *>            [V2].
  193: *>
  194: *>  The size of the trapezoidal block V2 is determined by the parameter L, 
  195: *>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
  196: *>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
  197: *>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
  198: *>
  199: *>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K. 
  200: *>                      [B]   
  201: *>  
  202: *>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
  203: *>
  204: *>  The real orthogonal matrix Q is formed from V and T.
  205: *>
  206: *>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
  207: *>
  208: *>  If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.
  209: *>
  210: *>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
  211: *>
  212: *>  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.
  213: *> \endverbatim
  214: *>
  215: *  =====================================================================
  216:       SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
  217:      $                    A, LDA, B, LDB, WORK, INFO )
  218: *
  219: *  -- LAPACK computational routine (version 3.5.0) --
  220: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  221: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  222: *     November 2013
  223: *
  224: *     .. Scalar Arguments ..
  225:       CHARACTER SIDE, TRANS
  226:       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
  227: *     ..
  228: *     .. Array Arguments ..
  229:       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ), 
  230:      $                   T( LDT, * ), WORK( * )
  231: *     ..
  232: *
  233: *  =====================================================================
  234: *
  235: *     ..
  236: *     .. Local Scalars ..
  237:       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
  238:       INTEGER            I, IB, MB, LB, KF, LDAQ, LDVQ
  239: *     ..
  240: *     .. External Functions ..
  241:       LOGICAL            LSAME
  242:       EXTERNAL           LSAME
  243: *     ..
  244: *     .. External Subroutines ..
  245:       EXTERNAL           XERBLA, DLARFB
  246: *     ..
  247: *     .. Intrinsic Functions ..
  248:       INTRINSIC          MAX, MIN
  249: *     ..
  250: *     .. Executable Statements ..
  251: *
  252: *     .. Test the input arguments ..
  253: *
  254:       INFO   = 0
  255:       LEFT   = LSAME( SIDE,  'L' )
  256:       RIGHT  = LSAME( SIDE,  'R' )
  257:       TRAN   = LSAME( TRANS, 'T' )
  258:       NOTRAN = LSAME( TRANS, 'N' )
  259: *      
  260:       IF ( LEFT ) THEN
  261:          LDVQ = MAX( 1, M )
  262:          LDAQ = MAX( 1, K )
  263:       ELSE IF ( RIGHT ) THEN
  264:          LDVQ = MAX( 1, N )
  265:          LDAQ = MAX( 1, M )
  266:       END IF
  267:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  268:          INFO = -1
  269:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  270:          INFO = -2
  271:       ELSE IF( M.LT.0 ) THEN
  272:          INFO = -3
  273:       ELSE IF( N.LT.0 ) THEN
  274:          INFO = -4
  275:       ELSE IF( K.LT.0 ) THEN
  276:          INFO = -5
  277:       ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
  278:          INFO = -6         
  279:       ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0) ) THEN
  280:          INFO = -7
  281:       ELSE IF( LDV.LT.LDVQ ) THEN
  282:          INFO = -9
  283:       ELSE IF( LDT.LT.NB ) THEN
  284:          INFO = -11
  285:       ELSE IF( LDA.LT.LDAQ ) THEN
  286:          INFO = -13
  287:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
  288:          INFO = -15
  289:       END IF
  290: *
  291:       IF( INFO.NE.0 ) THEN
  292:          CALL XERBLA( 'DTPMQRT', -INFO )
  293:          RETURN
  294:       END IF
  295: *
  296: *     .. Quick return if possible ..
  297: *
  298:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
  299: *
  300:       IF( LEFT .AND. TRAN ) THEN
  301: *
  302:          DO I = 1, K, NB
  303:             IB = MIN( NB, K-I+1 )
  304:             MB = MIN( M-L+I+IB-1, M )
  305:             IF( I.GE.L ) THEN
  306:                LB = 0
  307:             ELSE
  308:                LB = MB-M+L-I+1
  309:             END IF
  310:             CALL DTPRFB( 'L', 'T', 'F', 'C', MB, N, IB, LB, 
  311:      $                   V( 1, I ), LDV, T( 1, I ), LDT, 
  312:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
  313:          END DO
  314: *         
  315:       ELSE IF( RIGHT .AND. NOTRAN ) THEN
  316: *
  317:          DO I = 1, K, NB
  318:             IB = MIN( NB, K-I+1 )
  319:             MB = MIN( N-L+I+IB-1, N )
  320:             IF( I.GE.L ) THEN
  321:                LB = 0
  322:             ELSE
  323:                LB = MB-N+L-I+1
  324:             END IF
  325:             CALL DTPRFB( 'R', 'N', 'F', 'C', M, MB, IB, LB, 
  326:      $                   V( 1, I ), LDV, T( 1, I ), LDT, 
  327:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
  328:          END DO
  329: *
  330:       ELSE IF( LEFT .AND. NOTRAN ) THEN
  331: *
  332:          KF = ((K-1)/NB)*NB+1
  333:          DO I = KF, 1, -NB
  334:             IB = MIN( NB, K-I+1 )  
  335:             MB = MIN( M-L+I+IB-1, M )
  336:             IF( I.GE.L ) THEN
  337:                LB = 0
  338:             ELSE
  339:                LB = MB-M+L-I+1
  340:             END IF                   
  341:             CALL DTPRFB( 'L', 'N', 'F', 'C', MB, N, IB, LB,
  342:      $                   V( 1, I ), LDV, T( 1, I ), LDT, 
  343:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
  344:          END DO
  345: *
  346:       ELSE IF( RIGHT .AND. TRAN ) THEN
  347: *
  348:          KF = ((K-1)/NB)*NB+1
  349:          DO I = KF, 1, -NB
  350:             IB = MIN( NB, K-I+1 )         
  351:             MB = MIN( N-L+I+IB-1, N )
  352:             IF( I.GE.L ) THEN
  353:                LB = 0
  354:             ELSE
  355:                LB = MB-N+L-I+1
  356:             END IF
  357:             CALL DTPRFB( 'R', 'T', 'F', 'C', M, MB, IB, LB,
  358:      $                   V( 1, I ), LDV, T( 1, I ), LDT, 
  359:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
  360:          END DO
  361: *
  362:       END IF
  363: *
  364:       RETURN
  365: *
  366: *     End of DTPMQRT
  367: *
  368:       END

CVSweb interface <joel.bertrand@systella.fr>