Annotation of rpl/lapack/lapack/dtpmqrt.f, revision 1.13

1.1       bertrand    1: *> \brief \b DTPMQRT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.8       bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.1       bertrand    7: *
                      8: *> \htmlonly
1.8       bertrand    9: *> Download DTPMQRT + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpmqrt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpmqrt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpmqrt.f">
1.1       bertrand   15: *> [TXT]</a>
1.8       bertrand   16: *> \endhtmlonly
1.1       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
                     22: *                           A, LDA, B, LDB, WORK, INFO )
1.8       bertrand   23: *
1.1       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER SIDE, TRANS
                     26: *       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
                     27: *       ..
                     28: *       .. Array Arguments ..
1.8       bertrand   29: *       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ),
1.1       bertrand   30: *      $                   T( LDT, * ), WORK( * )
                     31: *       ..
1.8       bertrand   32: *
1.1       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
1.8       bertrand   39: *> DTPMQRT applies a real orthogonal matrix Q obtained from a
1.1       bertrand   40: *> "triangular-pentagonal" real block reflector H to a general
                     41: *> real matrix C, which consists of two blocks A and B.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] SIDE
                     48: *> \verbatim
                     49: *>          SIDE is CHARACTER*1
                     50: *>          = 'L': apply Q or Q**T from the Left;
                     51: *>          = 'R': apply Q or Q**T from the Right.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] TRANS
                     55: *> \verbatim
                     56: *>          TRANS is CHARACTER*1
                     57: *>          = 'N':  No transpose, apply Q;
1.6       bertrand   58: *>          = 'T':  Transpose, apply Q**T.
1.1       bertrand   59: *> \endverbatim
                     60: *>
                     61: *> \param[in] M
                     62: *> \verbatim
                     63: *>          M is INTEGER
                     64: *>          The number of rows of the matrix B. M >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] N
                     68: *> \verbatim
                     69: *>          N is INTEGER
                     70: *>          The number of columns of the matrix B. N >= 0.
                     71: *> \endverbatim
1.8       bertrand   72: *>
1.1       bertrand   73: *> \param[in] K
                     74: *> \verbatim
                     75: *>          K is INTEGER
                     76: *>          The number of elementary reflectors whose product defines
                     77: *>          the matrix Q.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] L
                     81: *> \verbatim
                     82: *>          L is INTEGER
1.8       bertrand   83: *>          The order of the trapezoidal part of V.
1.1       bertrand   84: *>          K >= L >= 0.  See Further Details.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] NB
                     88: *> \verbatim
                     89: *>          NB is INTEGER
                     90: *>          The block size used for the storage of T.  K >= NB >= 1.
                     91: *>          This must be the same value of NB used to generate T
                     92: *>          in CTPQRT.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] V
                     96: *> \verbatim
1.12      bertrand   97: *>          V is DOUBLE PRECISION array, dimension (LDV,K)
1.1       bertrand   98: *>          The i-th column must contain the vector which defines the
                     99: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                    100: *>          CTPQRT in B.  See Further Details.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDV
                    104: *> \verbatim
                    105: *>          LDV is INTEGER
                    106: *>          The leading dimension of the array V.
                    107: *>          If SIDE = 'L', LDV >= max(1,M);
                    108: *>          if SIDE = 'R', LDV >= max(1,N).
                    109: *> \endverbatim
                    110: *>
                    111: *> \param[in] T
                    112: *> \verbatim
                    113: *>          T is DOUBLE PRECISION array, dimension (LDT,K)
                    114: *>          The upper triangular factors of the block reflectors
                    115: *>          as returned by CTPQRT, stored as a NB-by-K matrix.
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] LDT
                    119: *> \verbatim
                    120: *>          LDT is INTEGER
                    121: *>          The leading dimension of the array T.  LDT >= NB.
                    122: *> \endverbatim
                    123: *>
                    124: *> \param[in,out] A
                    125: *> \verbatim
                    126: *>          A is DOUBLE PRECISION array, dimension
1.8       bertrand  127: *>          (LDA,N) if SIDE = 'L' or
1.1       bertrand  128: *>          (LDA,K) if SIDE = 'R'
                    129: *>          On entry, the K-by-N or M-by-K matrix A.
1.8       bertrand  130: *>          On exit, A is overwritten by the corresponding block of
1.1       bertrand  131: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
                    132: *> \endverbatim
                    133: *>
                    134: *> \param[in] LDA
                    135: *> \verbatim
                    136: *>          LDA is INTEGER
1.8       bertrand  137: *>          The leading dimension of the array A.
1.1       bertrand  138: *>          If SIDE = 'L', LDC >= max(1,K);
1.8       bertrand  139: *>          If SIDE = 'R', LDC >= max(1,M).
1.1       bertrand  140: *> \endverbatim
                    141: *>
                    142: *> \param[in,out] B
                    143: *> \verbatim
                    144: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    145: *>          On entry, the M-by-N matrix B.
                    146: *>          On exit, B is overwritten by the corresponding block of
                    147: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[in] LDB
                    151: *> \verbatim
                    152: *>          LDB is INTEGER
1.8       bertrand  153: *>          The leading dimension of the array B.
1.1       bertrand  154: *>          LDB >= max(1,M).
                    155: *> \endverbatim
                    156: *>
                    157: *> \param[out] WORK
                    158: *> \verbatim
                    159: *>          WORK is DOUBLE PRECISION array. The dimension of WORK is
                    160: *>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] INFO
                    164: *> \verbatim
                    165: *>          INFO is INTEGER
                    166: *>          = 0:  successful exit
                    167: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    168: *> \endverbatim
                    169: *
                    170: *  Authors:
                    171: *  ========
                    172: *
1.8       bertrand  173: *> \author Univ. of Tennessee
                    174: *> \author Univ. of California Berkeley
                    175: *> \author Univ. of Colorado Denver
                    176: *> \author NAG Ltd.
1.1       bertrand  177: *
                    178: *> \ingroup doubleOTHERcomputational
                    179: *
                    180: *> \par Further Details:
                    181: *  =====================
                    182: *>
                    183: *> \verbatim
                    184: *>
                    185: *>  The columns of the pentagonal matrix V contain the elementary reflectors
1.8       bertrand  186: *>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
1.1       bertrand  187: *>  trapezoidal block V2:
                    188: *>
                    189: *>        V = [V1]
                    190: *>            [V2].
                    191: *>
1.8       bertrand  192: *>  The size of the trapezoidal block V2 is determined by the parameter L,
1.1       bertrand  193: *>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
                    194: *>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
                    195: *>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
                    196: *>
1.8       bertrand  197: *>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
                    198: *>                      [B]
                    199: *>
1.1       bertrand  200: *>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
                    201: *>
                    202: *>  The real orthogonal matrix Q is formed from V and T.
                    203: *>
                    204: *>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
                    205: *>
                    206: *>  If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.
                    207: *>
                    208: *>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
                    209: *>
                    210: *>  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.
                    211: *> \endverbatim
                    212: *>
                    213: *  =====================================================================
                    214:       SUBROUTINE DTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
                    215:      $                    A, LDA, B, LDB, WORK, INFO )
                    216: *
1.13    ! bertrand  217: *  -- LAPACK computational routine --
1.1       bertrand  218: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    219: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    220: *
                    221: *     .. Scalar Arguments ..
                    222:       CHARACTER SIDE, TRANS
                    223:       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
                    224: *     ..
                    225: *     .. Array Arguments ..
1.8       bertrand  226:       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ),
1.1       bertrand  227:      $                   T( LDT, * ), WORK( * )
                    228: *     ..
                    229: *
                    230: *  =====================================================================
                    231: *
                    232: *     ..
                    233: *     .. Local Scalars ..
                    234:       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
1.4       bertrand  235:       INTEGER            I, IB, MB, LB, KF, LDAQ, LDVQ
1.1       bertrand  236: *     ..
                    237: *     .. External Functions ..
                    238:       LOGICAL            LSAME
                    239:       EXTERNAL           LSAME
                    240: *     ..
                    241: *     .. External Subroutines ..
1.10      bertrand  242:       EXTERNAL           DTPRFB, XERBLA
1.1       bertrand  243: *     ..
                    244: *     .. Intrinsic Functions ..
                    245:       INTRINSIC          MAX, MIN
                    246: *     ..
                    247: *     .. Executable Statements ..
                    248: *
                    249: *     .. Test the input arguments ..
                    250: *
                    251:       INFO   = 0
                    252:       LEFT   = LSAME( SIDE,  'L' )
                    253:       RIGHT  = LSAME( SIDE,  'R' )
                    254:       TRAN   = LSAME( TRANS, 'T' )
                    255:       NOTRAN = LSAME( TRANS, 'N' )
1.8       bertrand  256: *
1.4       bertrand  257:       IF ( LEFT ) THEN
                    258:          LDVQ = MAX( 1, M )
                    259:          LDAQ = MAX( 1, K )
1.1       bertrand  260:       ELSE IF ( RIGHT ) THEN
1.4       bertrand  261:          LDVQ = MAX( 1, N )
                    262:          LDAQ = MAX( 1, M )
1.1       bertrand  263:       END IF
                    264:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
                    265:          INFO = -1
                    266:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
                    267:          INFO = -2
                    268:       ELSE IF( M.LT.0 ) THEN
                    269:          INFO = -3
                    270:       ELSE IF( N.LT.0 ) THEN
                    271:          INFO = -4
                    272:       ELSE IF( K.LT.0 ) THEN
                    273:          INFO = -5
                    274:       ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
1.8       bertrand  275:          INFO = -6
1.4       bertrand  276:       ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0) ) THEN
1.1       bertrand  277:          INFO = -7
1.4       bertrand  278:       ELSE IF( LDV.LT.LDVQ ) THEN
1.1       bertrand  279:          INFO = -9
                    280:       ELSE IF( LDT.LT.NB ) THEN
                    281:          INFO = -11
1.4       bertrand  282:       ELSE IF( LDA.LT.LDAQ ) THEN
1.1       bertrand  283:          INFO = -13
                    284:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
                    285:          INFO = -15
                    286:       END IF
                    287: *
                    288:       IF( INFO.NE.0 ) THEN
                    289:          CALL XERBLA( 'DTPMQRT', -INFO )
                    290:          RETURN
                    291:       END IF
                    292: *
                    293: *     .. Quick return if possible ..
                    294: *
                    295:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
                    296: *
                    297:       IF( LEFT .AND. TRAN ) THEN
                    298: *
                    299:          DO I = 1, K, NB
                    300:             IB = MIN( NB, K-I+1 )
                    301:             MB = MIN( M-L+I+IB-1, M )
                    302:             IF( I.GE.L ) THEN
                    303:                LB = 0
                    304:             ELSE
                    305:                LB = MB-M+L-I+1
                    306:             END IF
1.8       bertrand  307:             CALL DTPRFB( 'L', 'T', 'F', 'C', MB, N, IB, LB,
                    308:      $                   V( 1, I ), LDV, T( 1, I ), LDT,
1.1       bertrand  309:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
                    310:          END DO
1.8       bertrand  311: *
1.1       bertrand  312:       ELSE IF( RIGHT .AND. NOTRAN ) THEN
                    313: *
                    314:          DO I = 1, K, NB
                    315:             IB = MIN( NB, K-I+1 )
                    316:             MB = MIN( N-L+I+IB-1, N )
                    317:             IF( I.GE.L ) THEN
                    318:                LB = 0
                    319:             ELSE
                    320:                LB = MB-N+L-I+1
                    321:             END IF
1.8       bertrand  322:             CALL DTPRFB( 'R', 'N', 'F', 'C', M, MB, IB, LB,
                    323:      $                   V( 1, I ), LDV, T( 1, I ), LDT,
1.1       bertrand  324:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
                    325:          END DO
                    326: *
                    327:       ELSE IF( LEFT .AND. NOTRAN ) THEN
                    328: *
                    329:          KF = ((K-1)/NB)*NB+1
                    330:          DO I = KF, 1, -NB
1.8       bertrand  331:             IB = MIN( NB, K-I+1 )
1.1       bertrand  332:             MB = MIN( M-L+I+IB-1, M )
                    333:             IF( I.GE.L ) THEN
                    334:                LB = 0
                    335:             ELSE
                    336:                LB = MB-M+L-I+1
1.8       bertrand  337:             END IF
1.1       bertrand  338:             CALL DTPRFB( 'L', 'N', 'F', 'C', MB, N, IB, LB,
1.8       bertrand  339:      $                   V( 1, I ), LDV, T( 1, I ), LDT,
1.1       bertrand  340:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
                    341:          END DO
                    342: *
                    343:       ELSE IF( RIGHT .AND. TRAN ) THEN
                    344: *
                    345:          KF = ((K-1)/NB)*NB+1
                    346:          DO I = KF, 1, -NB
1.8       bertrand  347:             IB = MIN( NB, K-I+1 )
1.1       bertrand  348:             MB = MIN( N-L+I+IB-1, N )
                    349:             IF( I.GE.L ) THEN
                    350:                LB = 0
                    351:             ELSE
                    352:                LB = MB-N+L-I+1
                    353:             END IF
                    354:             CALL DTPRFB( 'R', 'T', 'F', 'C', M, MB, IB, LB,
1.8       bertrand  355:      $                   V( 1, I ), LDV, T( 1, I ), LDT,
1.1       bertrand  356:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
                    357:          END DO
                    358: *
                    359:       END IF
                    360: *
                    361:       RETURN
                    362: *
                    363: *     End of DTPMQRT
                    364: *
                    365:       END

CVSweb interface <joel.bertrand@systella.fr>