Annotation of rpl/lapack/lapack/dtpmlqt.f, revision 1.6

1.1       bertrand    1: *> \brief \b DTPMLQT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
1.6     ! bertrand    9: *> Download DTPMLQT + dependencies
1.1       bertrand   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtpmlqt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtpmlqt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtpmlqt.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTPMLQT( SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT,
                     22: *                           A, LDA, B, LDB, WORK, INFO )
                     23: *
                     24: *       .. Scalar Arguments ..
                     25: *       CHARACTER SIDE, TRANS
                     26: *       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, MB, LDT
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ),
                     30: *      $                   T( LDT, * ), WORK( * )
                     31: *       ..
                     32: *
                     33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DTPMQRT applies a real orthogonal matrix Q obtained from a
                     40: *> "triangular-pentagonal" real block reflector H to a general
                     41: *> real matrix C, which consists of two blocks A and B.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] SIDE
                     48: *> \verbatim
                     49: *>          SIDE is CHARACTER*1
                     50: *>          = 'L': apply Q or Q**T from the Left;
                     51: *>          = 'R': apply Q or Q**T from the Right.
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] TRANS
                     55: *> \verbatim
                     56: *>          TRANS is CHARACTER*1
                     57: *>          = 'N':  No transpose, apply Q;
                     58: *>          = 'T':  Transpose, apply Q**T.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in] M
                     62: *> \verbatim
                     63: *>          M is INTEGER
                     64: *>          The number of rows of the matrix B. M >= 0.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] N
                     68: *> \verbatim
                     69: *>          N is INTEGER
                     70: *>          The number of columns of the matrix B. N >= 0.
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[in] K
                     74: *> \verbatim
                     75: *>          K is INTEGER
                     76: *>          The number of elementary reflectors whose product defines
                     77: *>          the matrix Q.
                     78: *> \endverbatim
                     79: *>
                     80: *> \param[in] L
                     81: *> \verbatim
                     82: *>          L is INTEGER
                     83: *>          The order of the trapezoidal part of V.
                     84: *>          K >= L >= 0.  See Further Details.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] MB
                     88: *> \verbatim
                     89: *>          MB is INTEGER
                     90: *>          The block size used for the storage of T.  K >= MB >= 1.
                     91: *>          This must be the same value of MB used to generate T
                     92: *>          in DTPLQT.
                     93: *> \endverbatim
                     94: *>
                     95: *> \param[in] V
                     96: *> \verbatim
1.5       bertrand   97: *>          V is DOUBLE PRECISION array, dimension (LDV,K)
1.1       bertrand   98: *>          The i-th row must contain the vector which defines the
                     99: *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
                    100: *>          DTPLQT in B.  See Further Details.
                    101: *> \endverbatim
                    102: *>
                    103: *> \param[in] LDV
                    104: *> \verbatim
                    105: *>          LDV is INTEGER
1.6     ! bertrand  106: *>          The leading dimension of the array V. LDV >= K.
1.1       bertrand  107: *> \endverbatim
                    108: *>
                    109: *> \param[in] T
                    110: *> \verbatim
                    111: *>          T is DOUBLE PRECISION array, dimension (LDT,K)
                    112: *>          The upper triangular factors of the block reflectors
                    113: *>          as returned by DTPLQT, stored as a MB-by-K matrix.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDT
                    117: *> \verbatim
                    118: *>          LDT is INTEGER
                    119: *>          The leading dimension of the array T.  LDT >= MB.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in,out] A
                    123: *> \verbatim
                    124: *>          A is DOUBLE PRECISION array, dimension
                    125: *>          (LDA,N) if SIDE = 'L' or
                    126: *>          (LDA,K) if SIDE = 'R'
                    127: *>          On entry, the K-by-N or M-by-K matrix A.
                    128: *>          On exit, A is overwritten by the corresponding block of
                    129: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDA
                    133: *> \verbatim
                    134: *>          LDA is INTEGER
                    135: *>          The leading dimension of the array A.
1.6     ! bertrand  136: *>          If SIDE = 'L', LDA >= max(1,K);
        !           137: *>          If SIDE = 'R', LDA >= max(1,M).
1.1       bertrand  138: *> \endverbatim
                    139: *>
                    140: *> \param[in,out] B
                    141: *> \verbatim
                    142: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    143: *>          On entry, the M-by-N matrix B.
                    144: *>          On exit, B is overwritten by the corresponding block of
                    145: *>          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in] LDB
                    149: *> \verbatim
                    150: *>          LDB is INTEGER
                    151: *>          The leading dimension of the array B.
                    152: *>          LDB >= max(1,M).
                    153: *> \endverbatim
                    154: *>
                    155: *> \param[out] WORK
                    156: *> \verbatim
                    157: *>          WORK is DOUBLE PRECISION array. The dimension of WORK is
                    158: *>           N*MB if SIDE = 'L', or  M*MB if SIDE = 'R'.
                    159: *> \endverbatim
                    160: *>
                    161: *> \param[out] INFO
                    162: *> \verbatim
                    163: *>          INFO is INTEGER
                    164: *>          = 0:  successful exit
                    165: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    166: *> \endverbatim
                    167: *
                    168: *  Authors:
                    169: *  ========
                    170: *
                    171: *> \author Univ. of Tennessee
                    172: *> \author Univ. of California Berkeley
                    173: *> \author Univ. of Colorado Denver
                    174: *> \author NAG Ltd.
                    175: *
                    176: *> \ingroup doubleOTHERcomputational
                    177: *
                    178: *> \par Further Details:
                    179: *  =====================
                    180: *>
                    181: *> \verbatim
                    182: *>
                    183: *>  The columns of the pentagonal matrix V contain the elementary reflectors
                    184: *>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
                    185: *>  trapezoidal block V2:
                    186: *>
                    187: *>        V = [V1] [V2].
                    188: *>
                    189: *>
                    190: *>  The size of the trapezoidal block V2 is determined by the parameter L,
                    191: *>  where 0 <= L <= K; V2 is lower trapezoidal, consisting of the first L
                    192: *>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is lower triangular;
                    193: *>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
                    194: *>
                    195: *>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is K-by-M.
                    196: *>                      [B]
                    197: *>
                    198: *>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is K-by-N.
                    199: *>
                    200: *>  The real orthogonal matrix Q is formed from V and T.
                    201: *>
                    202: *>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
                    203: *>
                    204: *>  If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.
                    205: *>
                    206: *>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
                    207: *>
                    208: *>  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.
                    209: *> \endverbatim
                    210: *>
                    211: *  =====================================================================
                    212:       SUBROUTINE DTPMLQT( SIDE, TRANS, M, N, K, L, MB, V, LDV, T, LDT,
                    213:      $                    A, LDA, B, LDB, WORK, INFO )
                    214: *
1.6     ! bertrand  215: *  -- LAPACK computational routine --
1.1       bertrand  216: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    217: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    218: *
                    219: *     .. Scalar Arguments ..
                    220:       CHARACTER SIDE, TRANS
                    221:       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, MB, LDT
                    222: *     ..
                    223: *     .. Array Arguments ..
                    224:       DOUBLE PRECISION   V( LDV, * ), A( LDA, * ), B( LDB, * ),
                    225:      $                   T( LDT, * ), WORK( * )
                    226: *     ..
                    227: *
                    228: *  =====================================================================
                    229: *
                    230: *     ..
                    231: *     .. Local Scalars ..
                    232:       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
                    233:       INTEGER            I, IB, NB, LB, KF, LDAQ
                    234: *     ..
                    235: *     .. External Functions ..
                    236:       LOGICAL            LSAME
                    237:       EXTERNAL           LSAME
                    238: *     ..
                    239: *     .. External Subroutines ..
1.6     ! bertrand  240:       EXTERNAL           XERBLA, DTPRFB
1.1       bertrand  241: *     ..
                    242: *     .. Intrinsic Functions ..
                    243:       INTRINSIC          MAX, MIN
                    244: *     ..
                    245: *     .. Executable Statements ..
                    246: *
                    247: *     .. Test the input arguments ..
                    248: *
                    249:       INFO   = 0
                    250:       LEFT   = LSAME( SIDE,  'L' )
                    251:       RIGHT  = LSAME( SIDE,  'R' )
                    252:       TRAN   = LSAME( TRANS, 'T' )
                    253:       NOTRAN = LSAME( TRANS, 'N' )
                    254: *
                    255:       IF ( LEFT ) THEN
                    256:          LDAQ = MAX( 1, K )
                    257:       ELSE IF ( RIGHT ) THEN
                    258:          LDAQ = MAX( 1, M )
                    259:       END IF
                    260:       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
                    261:          INFO = -1
                    262:       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
                    263:          INFO = -2
                    264:       ELSE IF( M.LT.0 ) THEN
                    265:          INFO = -3
                    266:       ELSE IF( N.LT.0 ) THEN
                    267:          INFO = -4
                    268:       ELSE IF( K.LT.0 ) THEN
                    269:          INFO = -5
                    270:       ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
                    271:          INFO = -6
                    272:       ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0) ) THEN
                    273:          INFO = -7
                    274:       ELSE IF( LDV.LT.K ) THEN
                    275:          INFO = -9
                    276:       ELSE IF( LDT.LT.MB ) THEN
                    277:          INFO = -11
                    278:       ELSE IF( LDA.LT.LDAQ ) THEN
                    279:          INFO = -13
                    280:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
                    281:          INFO = -15
                    282:       END IF
                    283: *
                    284:       IF( INFO.NE.0 ) THEN
                    285:          CALL XERBLA( 'DTPMLQT', -INFO )
                    286:          RETURN
                    287:       END IF
                    288: *
                    289: *     .. Quick return if possible ..
                    290: *
                    291:       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
                    292: *
                    293:       IF( LEFT .AND. NOTRAN ) THEN
                    294: *
                    295:          DO I = 1, K, MB
                    296:             IB = MIN( MB, K-I+1 )
                    297:             NB = MIN( M-L+I+IB-1, M )
                    298:             IF( I.GE.L ) THEN
                    299:                LB = 0
                    300:             ELSE
                    301:                LB = 0
                    302:             END IF
                    303:             CALL DTPRFB( 'L', 'T', 'F', 'R', NB, N, IB, LB,
                    304:      $                   V( I, 1 ), LDV, T( 1, I ), LDT,
                    305:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
                    306:          END DO
                    307: *
                    308:       ELSE IF( RIGHT .AND. TRAN ) THEN
                    309: *
                    310:          DO I = 1, K, MB
                    311:             IB = MIN( MB, K-I+1 )
                    312:             NB = MIN( N-L+I+IB-1, N )
                    313:             IF( I.GE.L ) THEN
                    314:                LB = 0
                    315:             ELSE
                    316:                LB = NB-N+L-I+1
                    317:             END IF
                    318:             CALL DTPRFB( 'R', 'N', 'F', 'R', M, NB, IB, LB,
                    319:      $                   V( I, 1 ), LDV, T( 1, I ), LDT,
                    320:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
                    321:          END DO
                    322: *
                    323:       ELSE IF( LEFT .AND. TRAN ) THEN
                    324: *
                    325:          KF = ((K-1)/MB)*MB+1
                    326:          DO I = KF, 1, -MB
                    327:             IB = MIN( MB, K-I+1 )
                    328:             NB = MIN( M-L+I+IB-1, M )
                    329:             IF( I.GE.L ) THEN
                    330:                LB = 0
                    331:             ELSE
                    332:                LB = 0
                    333:             END IF
                    334:             CALL DTPRFB( 'L', 'N', 'F', 'R', NB, N, IB, LB,
                    335:      $                   V( I, 1 ), LDV, T( 1, I ), LDT,
                    336:      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
                    337:          END DO
                    338: *
                    339:       ELSE IF( RIGHT .AND. NOTRAN ) THEN
                    340: *
                    341:          KF = ((K-1)/MB)*MB+1
                    342:          DO I = KF, 1, -MB
                    343:             IB = MIN( MB, K-I+1 )
                    344:             NB = MIN( N-L+I+IB-1, N )
                    345:             IF( I.GE.L ) THEN
                    346:                LB = 0
                    347:             ELSE
                    348:                LB = NB-N+L-I+1
                    349:             END IF
                    350:             CALL DTPRFB( 'R', 'T', 'F', 'R', M, NB, IB, LB,
                    351:      $                   V( I, 1 ), LDV, T( 1, I ), LDT,
                    352:      $                   A( 1, I ), LDA, B, LDB, WORK, M )
                    353:          END DO
                    354: *
                    355:       END IF
                    356: *
                    357:       RETURN
                    358: *
                    359: *     End of DTPMLQT
                    360: *
                    361:       END

CVSweb interface <joel.bertrand@systella.fr>