File:  [local] / rpl / lapack / lapack / dtplqt2.f
Revision 1.4: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:18:11 2018 UTC (5 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief \b DTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DTPLQT2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtplqt2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtplqt2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtplqt2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER   INFO, LDA, LDB, LDT, N, M, L
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
   28: *       ..
   29: *
   30: *
   31: *> \par Purpose:
   32: *  =============
   33: *>
   34: *> \verbatim
   35: *>
   36: *> DTPLQT2 computes a LQ a factorization of a real "triangular-pentagonal"
   37: *> matrix C, which is composed of a triangular block A and pentagonal block B,
   38: *> using the compact WY representation for Q.
   39: *> \endverbatim
   40: *
   41: *  Arguments:
   42: *  ==========
   43: *
   44: *> \param[in] M
   45: *> \verbatim
   46: *>          M is INTEGER
   47: *>          The total number of rows of the matrix B.
   48: *>          M >= 0.
   49: *> \endverbatim
   50: *>
   51: *> \param[in] N
   52: *> \verbatim
   53: *>          N is INTEGER
   54: *>          The number of columns of the matrix B, and the order of
   55: *>          the triangular matrix A.
   56: *>          N >= 0.
   57: *> \endverbatim
   58: *>
   59: *> \param[in] L
   60: *> \verbatim
   61: *>          L is INTEGER
   62: *>          The number of rows of the lower trapezoidal part of B.
   63: *>          MIN(M,N) >= L >= 0.  See Further Details.
   64: *> \endverbatim
   65: *>
   66: *> \param[in,out] A
   67: *> \verbatim
   68: *>          A is DOUBLE PRECISION array, dimension (LDA,M)
   69: *>          On entry, the lower triangular M-by-M matrix A.
   70: *>          On exit, the elements on and below the diagonal of the array
   71: *>          contain the lower triangular matrix L.
   72: *> \endverbatim
   73: *>
   74: *> \param[in] LDA
   75: *> \verbatim
   76: *>          LDA is INTEGER
   77: *>          The leading dimension of the array A.  LDA >= max(1,M).
   78: *> \endverbatim
   79: *>
   80: *> \param[in,out] B
   81: *> \verbatim
   82: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
   83: *>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
   84: *>          are rectangular, and the last L columns are lower trapezoidal.
   85: *>          On exit, B contains the pentagonal matrix V.  See Further Details.
   86: *> \endverbatim
   87: *>
   88: *> \param[in] LDB
   89: *> \verbatim
   90: *>          LDB is INTEGER
   91: *>          The leading dimension of the array B.  LDB >= max(1,M).
   92: *> \endverbatim
   93: *>
   94: *> \param[out] T
   95: *> \verbatim
   96: *>          T is DOUBLE PRECISION array, dimension (LDT,M)
   97: *>          The N-by-N upper triangular factor T of the block reflector.
   98: *>          See Further Details.
   99: *> \endverbatim
  100: *>
  101: *> \param[in] LDT
  102: *> \verbatim
  103: *>          LDT is INTEGER
  104: *>          The leading dimension of the array T.  LDT >= max(1,M)
  105: *> \endverbatim
  106: *>
  107: *> \param[out] INFO
  108: *> \verbatim
  109: *>          INFO is INTEGER
  110: *>          = 0: successful exit
  111: *>          < 0: if INFO = -i, the i-th argument had an illegal value
  112: *> \endverbatim
  113: *
  114: *  Authors:
  115: *  ========
  116: *
  117: *> \author Univ. of Tennessee
  118: *> \author Univ. of California Berkeley
  119: *> \author Univ. of Colorado Denver
  120: *> \author NAG Ltd.
  121: *
  122: *> \date June 2017
  123: *
  124: *> \ingroup doubleOTHERcomputational
  125: *
  126: *> \par Further Details:
  127: *  =====================
  128: *>
  129: *> \verbatim
  130: *>
  131: *>  The input matrix C is a M-by-(M+N) matrix
  132: *>
  133: *>               C = [ A ][ B ]
  134: *>
  135: *>
  136: *>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
  137: *>  matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
  138: *>  upper trapezoidal matrix B2:
  139: *>
  140: *>               B = [ B1 ][ B2 ]
  141: *>                   [ B1 ]  <-     M-by-(N-L) rectangular
  142: *>                   [ B2 ]  <-     M-by-L lower trapezoidal.
  143: *>
  144: *>  The lower trapezoidal matrix B2 consists of the first L columns of a
  145: *>  N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
  146: *>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
  147: *>
  148: *>  The matrix W stores the elementary reflectors H(i) in the i-th row
  149: *>  above the diagonal (of A) in the M-by-(M+N) input matrix C
  150: *>
  151: *>               C = [ A ][ B ]
  152: *>                   [ A ]  <- lower triangular M-by-M
  153: *>                   [ B ]  <- M-by-N pentagonal
  154: *>
  155: *>  so that W can be represented as
  156: *>
  157: *>               W = [ I ][ V ]
  158: *>                   [ I ]  <- identity, M-by-M
  159: *>                   [ V ]  <- M-by-N, same form as B.
  160: *>
  161: *>  Thus, all of information needed for W is contained on exit in B, which
  162: *>  we call V above.  Note that V has the same form as B; that is,
  163: *>
  164: *>               W = [ V1 ][ V2 ]
  165: *>                   [ V1 ] <-     M-by-(N-L) rectangular
  166: *>                   [ V2 ] <-     M-by-L lower trapezoidal.
  167: *>
  168: *>  The rows of V represent the vectors which define the H(i)'s.
  169: *>  The (M+N)-by-(M+N) block reflector H is then given by
  170: *>
  171: *>               H = I - W**T * T * W
  172: *>
  173: *>  where W^H is the conjugate transpose of W and T is the upper triangular
  174: *>  factor of the block reflector.
  175: *> \endverbatim
  176: *>
  177: *  =====================================================================
  178:       SUBROUTINE DTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
  179: *
  180: *  -- LAPACK computational routine (version 3.7.1) --
  181: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  182: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  183: *     June 2017
  184: *
  185: *     .. Scalar Arguments ..
  186:       INTEGER   INFO, LDA, LDB, LDT, N, M, L
  187: *     ..
  188: *     .. Array Arguments ..
  189:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), T( LDT, * )
  190: *     ..
  191: *
  192: *  =====================================================================
  193: *
  194: *     .. Parameters ..
  195:       DOUBLE PRECISION  ONE, ZERO
  196:       PARAMETER( ONE = 1.0, ZERO = 0.0 )
  197: *     ..
  198: *     .. Local Scalars ..
  199:       INTEGER   I, J, P, MP, NP
  200:       DOUBLE PRECISION   ALPHA
  201: *     ..
  202: *     .. External Subroutines ..
  203:       EXTERNAL  DLARFG, DGEMV, DGER, DTRMV, XERBLA
  204: *     ..
  205: *     .. Intrinsic Functions ..
  206:       INTRINSIC MAX, MIN
  207: *     ..
  208: *     .. Executable Statements ..
  209: *
  210: *     Test the input arguments
  211: *
  212:       INFO = 0
  213:       IF( M.LT.0 ) THEN
  214:          INFO = -1
  215:       ELSE IF( N.LT.0 ) THEN
  216:          INFO = -2
  217:       ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
  218:          INFO = -3
  219:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  220:          INFO = -5
  221:       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
  222:          INFO = -7
  223:       ELSE IF( LDT.LT.MAX( 1, M ) ) THEN
  224:          INFO = -9
  225:       END IF
  226:       IF( INFO.NE.0 ) THEN
  227:          CALL XERBLA( 'DTPLQT2', -INFO )
  228:          RETURN
  229:       END IF
  230: *
  231: *     Quick return if possible
  232: *
  233:       IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
  234: *
  235:       DO I = 1, M
  236: *
  237: *        Generate elementary reflector H(I) to annihilate B(I,:)
  238: *
  239:          P = N-L+MIN( L, I )
  240:          CALL DLARFG( P+1, A( I, I ), B( I, 1 ), LDB, T( 1, I ) )
  241:          IF( I.LT.M ) THEN
  242: *
  243: *           W(M-I:1) := C(I+1:M,I:N) * C(I,I:N) [use W = T(M,:)]
  244: *
  245:             DO J = 1, M-I
  246:                T( M, J ) = (A( I+J, I ))
  247:             END DO
  248:             CALL DGEMV( 'N', M-I, P, ONE, B( I+1, 1 ), LDB,
  249:      $                  B( I, 1 ), LDB, ONE, T( M, 1 ), LDT )
  250: *
  251: *           C(I+1:M,I:N) = C(I+1:M,I:N) + alpha * C(I,I:N)*W(M-1:1)^H
  252: *
  253:             ALPHA = -(T( 1, I ))
  254:             DO J = 1, M-I
  255:                A( I+J, I ) = A( I+J, I ) + ALPHA*(T( M, J ))
  256:             END DO
  257:             CALL DGER( M-I, P, ALPHA,  T( M, 1 ), LDT,
  258:      $          B( I, 1 ), LDB, B( I+1, 1 ), LDB )
  259:          END IF
  260:       END DO
  261: *
  262:       DO I = 2, M
  263: *
  264: *        T(I,1:I-1) := C(I:I-1,1:N) * (alpha * C(I,I:N)^H)
  265: *
  266:          ALPHA = -T( 1, I )
  267: 
  268:          DO J = 1, I-1
  269:             T( I, J ) = ZERO
  270:          END DO
  271:          P = MIN( I-1, L )
  272:          NP = MIN( N-L+1, N )
  273:          MP = MIN( P+1, M )
  274: *
  275: *        Triangular part of B2
  276: *
  277:          DO J = 1, P
  278:             T( I, J ) = ALPHA*B( I, N-L+J )
  279:          END DO
  280:          CALL DTRMV( 'L', 'N', 'N', P, B( 1, NP ), LDB,
  281:      $               T( I, 1 ), LDT )
  282: *
  283: *        Rectangular part of B2
  284: *
  285:          CALL DGEMV( 'N', I-1-P, L,  ALPHA, B( MP, NP ), LDB,
  286:      $               B( I, NP ), LDB, ZERO, T( I,MP ), LDT )
  287: *
  288: *        B1
  289: *
  290:          CALL DGEMV( 'N', I-1, N-L, ALPHA, B, LDB, B( I, 1 ), LDB,
  291:      $               ONE, T( I, 1 ), LDT )
  292: *
  293: *        T(1:I-1,I) := T(1:I-1,1:I-1) * T(I,1:I-1)
  294: *
  295:         CALL DTRMV( 'L', 'T', 'N', I-1, T, LDT, T( I, 1 ), LDT )
  296: *
  297: *        T(I,I) = tau(I)
  298: *
  299:          T( I, I ) = T( 1, I )
  300:          T( 1, I ) = ZERO
  301:       END DO
  302:       DO I=1,M
  303:          DO J= I+1,M
  304:             T(I,J)=T(J,I)
  305:             T(J,I)= ZERO
  306:          END DO
  307:       END DO
  308: 
  309: *
  310: *     End of DTPLQT2
  311: *
  312:       END

CVSweb interface <joel.bertrand@systella.fr>