Annotation of rpl/lapack/lapack/dtgsna.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DTGSNA
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DTGSNA + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsna.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsna.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsna.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
        !            22: *                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
        !            23: *                          IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          HOWMNY, JOB
        !            27: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
        !            28: *       ..
        !            29: *       .. Array Arguments ..
        !            30: *       LOGICAL            SELECT( * )
        !            31: *       INTEGER            IWORK( * )
        !            32: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
        !            33: *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
        !            34: *       ..
        !            35: *  
        !            36: *
        !            37: *> \par Purpose:
        !            38: *  =============
        !            39: *>
        !            40: *> \verbatim
        !            41: *>
        !            42: *> DTGSNA estimates reciprocal condition numbers for specified
        !            43: *> eigenvalues and/or eigenvectors of a matrix pair (A, B) in
        !            44: *> generalized real Schur canonical form (or of any matrix pair
        !            45: *> (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
        !            46: *> Z**T denotes the transpose of Z.
        !            47: *>
        !            48: *> (A, B) must be in generalized real Schur form (as returned by DGGES),
        !            49: *> i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
        !            50: *> blocks. B is upper triangular.
        !            51: *>
        !            52: *> \endverbatim
        !            53: *
        !            54: *  Arguments:
        !            55: *  ==========
        !            56: *
        !            57: *> \param[in] JOB
        !            58: *> \verbatim
        !            59: *>          JOB is CHARACTER*1
        !            60: *>          Specifies whether condition numbers are required for
        !            61: *>          eigenvalues (S) or eigenvectors (DIF):
        !            62: *>          = 'E': for eigenvalues only (S);
        !            63: *>          = 'V': for eigenvectors only (DIF);
        !            64: *>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
        !            65: *> \endverbatim
        !            66: *>
        !            67: *> \param[in] HOWMNY
        !            68: *> \verbatim
        !            69: *>          HOWMNY is CHARACTER*1
        !            70: *>          = 'A': compute condition numbers for all eigenpairs;
        !            71: *>          = 'S': compute condition numbers for selected eigenpairs
        !            72: *>                 specified by the array SELECT.
        !            73: *> \endverbatim
        !            74: *>
        !            75: *> \param[in] SELECT
        !            76: *> \verbatim
        !            77: *>          SELECT is LOGICAL array, dimension (N)
        !            78: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
        !            79: *>          condition numbers are required. To select condition numbers
        !            80: *>          for the eigenpair corresponding to a real eigenvalue w(j),
        !            81: *>          SELECT(j) must be set to .TRUE.. To select condition numbers
        !            82: *>          corresponding to a complex conjugate pair of eigenvalues w(j)
        !            83: *>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
        !            84: *>          set to .TRUE..
        !            85: *>          If HOWMNY = 'A', SELECT is not referenced.
        !            86: *> \endverbatim
        !            87: *>
        !            88: *> \param[in] N
        !            89: *> \verbatim
        !            90: *>          N is INTEGER
        !            91: *>          The order of the square matrix pair (A, B). N >= 0.
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[in] A
        !            95: *> \verbatim
        !            96: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            97: *>          The upper quasi-triangular matrix A in the pair (A,B).
        !            98: *> \endverbatim
        !            99: *>
        !           100: *> \param[in] LDA
        !           101: *> \verbatim
        !           102: *>          LDA is INTEGER
        !           103: *>          The leading dimension of the array A. LDA >= max(1,N).
        !           104: *> \endverbatim
        !           105: *>
        !           106: *> \param[in] B
        !           107: *> \verbatim
        !           108: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
        !           109: *>          The upper triangular matrix B in the pair (A,B).
        !           110: *> \endverbatim
        !           111: *>
        !           112: *> \param[in] LDB
        !           113: *> \verbatim
        !           114: *>          LDB is INTEGER
        !           115: *>          The leading dimension of the array B. LDB >= max(1,N).
        !           116: *> \endverbatim
        !           117: *>
        !           118: *> \param[in] VL
        !           119: *> \verbatim
        !           120: *>          VL is DOUBLE PRECISION array, dimension (LDVL,M)
        !           121: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of
        !           122: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !           123: *>          and SELECT. The eigenvectors must be stored in consecutive
        !           124: *>          columns of VL, as returned by DTGEVC.
        !           125: *>          If JOB = 'V', VL is not referenced.
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] LDVL
        !           129: *> \verbatim
        !           130: *>          LDVL is INTEGER
        !           131: *>          The leading dimension of the array VL. LDVL >= 1.
        !           132: *>          If JOB = 'E' or 'B', LDVL >= N.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[in] VR
        !           136: *> \verbatim
        !           137: *>          VR is DOUBLE PRECISION array, dimension (LDVR,M)
        !           138: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of
        !           139: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
        !           140: *>          and SELECT. The eigenvectors must be stored in consecutive
        !           141: *>          columns ov VR, as returned by DTGEVC.
        !           142: *>          If JOB = 'V', VR is not referenced.
        !           143: *> \endverbatim
        !           144: *>
        !           145: *> \param[in] LDVR
        !           146: *> \verbatim
        !           147: *>          LDVR is INTEGER
        !           148: *>          The leading dimension of the array VR. LDVR >= 1.
        !           149: *>          If JOB = 'E' or 'B', LDVR >= N.
        !           150: *> \endverbatim
        !           151: *>
        !           152: *> \param[out] S
        !           153: *> \verbatim
        !           154: *>          S is DOUBLE PRECISION array, dimension (MM)
        !           155: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
        !           156: *>          selected eigenvalues, stored in consecutive elements of the
        !           157: *>          array. For a complex conjugate pair of eigenvalues two
        !           158: *>          consecutive elements of S are set to the same value. Thus
        !           159: *>          S(j), DIF(j), and the j-th columns of VL and VR all
        !           160: *>          correspond to the same eigenpair (but not in general the
        !           161: *>          j-th eigenpair, unless all eigenpairs are selected).
        !           162: *>          If JOB = 'V', S is not referenced.
        !           163: *> \endverbatim
        !           164: *>
        !           165: *> \param[out] DIF
        !           166: *> \verbatim
        !           167: *>          DIF is DOUBLE PRECISION array, dimension (MM)
        !           168: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
        !           169: *>          numbers of the selected eigenvectors, stored in consecutive
        !           170: *>          elements of the array. For a complex eigenvector two
        !           171: *>          consecutive elements of DIF are set to the same value. If
        !           172: *>          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
        !           173: *>          is set to 0; this can only occur when the true value would be
        !           174: *>          very small anyway.
        !           175: *>          If JOB = 'E', DIF is not referenced.
        !           176: *> \endverbatim
        !           177: *>
        !           178: *> \param[in] MM
        !           179: *> \verbatim
        !           180: *>          MM is INTEGER
        !           181: *>          The number of elements in the arrays S and DIF. MM >= M.
        !           182: *> \endverbatim
        !           183: *>
        !           184: *> \param[out] M
        !           185: *> \verbatim
        !           186: *>          M is INTEGER
        !           187: *>          The number of elements of the arrays S and DIF used to store
        !           188: *>          the specified condition numbers; for each selected real
        !           189: *>          eigenvalue one element is used, and for each selected complex
        !           190: *>          conjugate pair of eigenvalues, two elements are used.
        !           191: *>          If HOWMNY = 'A', M is set to N.
        !           192: *> \endverbatim
        !           193: *>
        !           194: *> \param[out] WORK
        !           195: *> \verbatim
        !           196: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           197: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           198: *> \endverbatim
        !           199: *>
        !           200: *> \param[in] LWORK
        !           201: *> \verbatim
        !           202: *>          LWORK is INTEGER
        !           203: *>          The dimension of the array WORK. LWORK >= max(1,N).
        !           204: *>          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
        !           205: *>
        !           206: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           207: *>          only calculates the optimal size of the WORK array, returns
        !           208: *>          this value as the first entry of the WORK array, and no error
        !           209: *>          message related to LWORK is issued by XERBLA.
        !           210: *> \endverbatim
        !           211: *>
        !           212: *> \param[out] IWORK
        !           213: *> \verbatim
        !           214: *>          IWORK is INTEGER array, dimension (N + 6)
        !           215: *>          If JOB = 'E', IWORK is not referenced.
        !           216: *> \endverbatim
        !           217: *>
        !           218: *> \param[out] INFO
        !           219: *> \verbatim
        !           220: *>          INFO is INTEGER
        !           221: *>          =0: Successful exit
        !           222: *>          <0: If INFO = -i, the i-th argument had an illegal value
        !           223: *> \endverbatim
        !           224: *
        !           225: *  Authors:
        !           226: *  ========
        !           227: *
        !           228: *> \author Univ. of Tennessee 
        !           229: *> \author Univ. of California Berkeley 
        !           230: *> \author Univ. of Colorado Denver 
        !           231: *> \author NAG Ltd. 
        !           232: *
        !           233: *> \date November 2011
        !           234: *
        !           235: *> \ingroup doubleOTHERcomputational
        !           236: *
        !           237: *> \par Further Details:
        !           238: *  =====================
        !           239: *>
        !           240: *> \verbatim
        !           241: *>
        !           242: *>  The reciprocal of the condition number of a generalized eigenvalue
        !           243: *>  w = (a, b) is defined as
        !           244: *>
        !           245: *>       S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
        !           246: *>
        !           247: *>  where u and v are the left and right eigenvectors of (A, B)
        !           248: *>  corresponding to w; |z| denotes the absolute value of the complex
        !           249: *>  number, and norm(u) denotes the 2-norm of the vector u.
        !           250: *>  The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv)
        !           251: *>  of the matrix pair (A, B). If both a and b equal zero, then (A B) is
        !           252: *>  singular and S(I) = -1 is returned.
        !           253: *>
        !           254: *>  An approximate error bound on the chordal distance between the i-th
        !           255: *>  computed generalized eigenvalue w and the corresponding exact
        !           256: *>  eigenvalue lambda is
        !           257: *>
        !           258: *>       chord(w, lambda) <= EPS * norm(A, B) / S(I)
        !           259: *>
        !           260: *>  where EPS is the machine precision.
        !           261: *>
        !           262: *>  The reciprocal of the condition number DIF(i) of right eigenvector u
        !           263: *>  and left eigenvector v corresponding to the generalized eigenvalue w
        !           264: *>  is defined as follows:
        !           265: *>
        !           266: *>  a) If the i-th eigenvalue w = (a,b) is real
        !           267: *>
        !           268: *>     Suppose U and V are orthogonal transformations such that
        !           269: *>
        !           270: *>              U**T*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1
        !           271: *>                                        ( 0  S22 ),( 0 T22 )  n-1
        !           272: *>                                          1  n-1     1 n-1
        !           273: *>
        !           274: *>     Then the reciprocal condition number DIF(i) is
        !           275: *>
        !           276: *>                Difl((a, b), (S22, T22)) = sigma-min( Zl ),
        !           277: *>
        !           278: *>     where sigma-min(Zl) denotes the smallest singular value of the
        !           279: *>     2(n-1)-by-2(n-1) matrix
        !           280: *>
        !           281: *>         Zl = [ kron(a, In-1)  -kron(1, S22) ]
        !           282: *>              [ kron(b, In-1)  -kron(1, T22) ] .
        !           283: *>
        !           284: *>     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
        !           285: *>     Kronecker product between the matrices X and Y.
        !           286: *>
        !           287: *>     Note that if the default method for computing DIF(i) is wanted
        !           288: *>     (see DLATDF), then the parameter DIFDRI (see below) should be
        !           289: *>     changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
        !           290: *>     See DTGSYL for more details.
        !           291: *>
        !           292: *>  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
        !           293: *>
        !           294: *>     Suppose U and V are orthogonal transformations such that
        !           295: *>
        !           296: *>              U**T*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2
        !           297: *>                                       ( 0    S22 ),( 0    T22) n-2
        !           298: *>                                         2    n-2     2    n-2
        !           299: *>
        !           300: *>     and (S11, T11) corresponds to the complex conjugate eigenvalue
        !           301: *>     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
        !           302: *>     that
        !           303: *>
        !           304: *>       U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 )
        !           305: *>                      (  0  s22 )                    (  0  t22 )
        !           306: *>
        !           307: *>     where the generalized eigenvalues w = s11/t11 and
        !           308: *>     conjg(w) = s22/t22.
        !           309: *>
        !           310: *>     Then the reciprocal condition number DIF(i) is bounded by
        !           311: *>
        !           312: *>         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
        !           313: *>
        !           314: *>     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
        !           315: *>     Z1 is the complex 2-by-2 matrix
        !           316: *>
        !           317: *>              Z1 =  [ s11  -s22 ]
        !           318: *>                    [ t11  -t22 ],
        !           319: *>
        !           320: *>     This is done by computing (using real arithmetic) the
        !           321: *>     roots of the characteristical polynomial det(Z1**T * Z1 - lambda I),
        !           322: *>     where Z1**T denotes the transpose of Z1 and det(X) denotes
        !           323: *>     the determinant of X.
        !           324: *>
        !           325: *>     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
        !           326: *>     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
        !           327: *>
        !           328: *>              Z2 = [ kron(S11**T, In-2)  -kron(I2, S22) ]
        !           329: *>                   [ kron(T11**T, In-2)  -kron(I2, T22) ]
        !           330: *>
        !           331: *>     Note that if the default method for computing DIF is wanted (see
        !           332: *>     DLATDF), then the parameter DIFDRI (see below) should be changed
        !           333: *>     from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
        !           334: *>     for more details.
        !           335: *>
        !           336: *>  For each eigenvalue/vector specified by SELECT, DIF stores a
        !           337: *>  Frobenius norm-based estimate of Difl.
        !           338: *>
        !           339: *>  An approximate error bound for the i-th computed eigenvector VL(i) or
        !           340: *>  VR(i) is given by
        !           341: *>
        !           342: *>             EPS * norm(A, B) / DIF(i).
        !           343: *>
        !           344: *>  See ref. [2-3] for more details and further references.
        !           345: *> \endverbatim
        !           346: *
        !           347: *> \par Contributors:
        !           348: *  ==================
        !           349: *>
        !           350: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
        !           351: *>     Umea University, S-901 87 Umea, Sweden.
        !           352: *
        !           353: *> \par References:
        !           354: *  ================
        !           355: *>
        !           356: *> \verbatim
        !           357: *>
        !           358: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
        !           359: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
        !           360: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
        !           361: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
        !           362: *>
        !           363: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
        !           364: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
        !           365: *>      Estimation: Theory, Algorithms and Software,
        !           366: *>      Report UMINF - 94.04, Department of Computing Science, Umea
        !           367: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
        !           368: *>      Note 87. To appear in Numerical Algorithms, 1996.
        !           369: *>
        !           370: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
        !           371: *>      for Solving the Generalized Sylvester Equation and Estimating the
        !           372: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
        !           373: *>      Department of Computing Science, Umea University, S-901 87 Umea,
        !           374: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
        !           375: *>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
        !           376: *>      No 1, 1996.
        !           377: *> \endverbatim
        !           378: *>
        !           379: *  =====================================================================
1.1       bertrand  380:       SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
                    381:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
                    382:      $                   IWORK, INFO )
                    383: *
1.9     ! bertrand  384: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  385: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    386: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  387: *     November 2011
1.1       bertrand  388: *
                    389: *     .. Scalar Arguments ..
                    390:       CHARACTER          HOWMNY, JOB
                    391:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
                    392: *     ..
                    393: *     .. Array Arguments ..
                    394:       LOGICAL            SELECT( * )
                    395:       INTEGER            IWORK( * )
                    396:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
                    397:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                    398: *     ..
                    399: *
                    400: *  =====================================================================
                    401: *
                    402: *     .. Parameters ..
                    403:       INTEGER            DIFDRI
                    404:       PARAMETER          ( DIFDRI = 3 )
                    405:       DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
                    406:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
                    407:      $                   FOUR = 4.0D+0 )
                    408: *     ..
                    409: *     .. Local Scalars ..
                    410:       LOGICAL            LQUERY, PAIR, SOMCON, WANTBH, WANTDF, WANTS
                    411:       INTEGER            I, IERR, IFST, ILST, IZ, K, KS, LWMIN, N1, N2
                    412:       DOUBLE PRECISION   ALPHAI, ALPHAR, ALPRQT, BETA, C1, C2, COND,
                    413:      $                   EPS, LNRM, RNRM, ROOT1, ROOT2, SCALE, SMLNUM,
                    414:      $                   TMPII, TMPIR, TMPRI, TMPRR, UHAV, UHAVI, UHBV,
                    415:      $                   UHBVI
                    416: *     ..
                    417: *     .. Local Arrays ..
                    418:       DOUBLE PRECISION   DUMMY( 1 ), DUMMY1( 1 )
                    419: *     ..
                    420: *     .. External Functions ..
                    421:       LOGICAL            LSAME
                    422:       DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
                    423:       EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
                    424: *     ..
                    425: *     .. External Subroutines ..
                    426:       EXTERNAL           DGEMV, DLACPY, DLAG2, DTGEXC, DTGSYL, XERBLA
                    427: *     ..
                    428: *     .. Intrinsic Functions ..
                    429:       INTRINSIC          MAX, MIN, SQRT
                    430: *     ..
                    431: *     .. Executable Statements ..
                    432: *
                    433: *     Decode and test the input parameters
                    434: *
                    435:       WANTBH = LSAME( JOB, 'B' )
                    436:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    437:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
                    438: *
                    439:       SOMCON = LSAME( HOWMNY, 'S' )
                    440: *
                    441:       INFO = 0
                    442:       LQUERY = ( LWORK.EQ.-1 )
                    443: *
                    444:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
                    445:          INFO = -1
                    446:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    447:          INFO = -2
                    448:       ELSE IF( N.LT.0 ) THEN
                    449:          INFO = -4
                    450:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    451:          INFO = -6
                    452:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    453:          INFO = -8
                    454:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
                    455:          INFO = -10
                    456:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
                    457:          INFO = -12
                    458:       ELSE
                    459: *
                    460: *        Set M to the number of eigenpairs for which condition numbers
                    461: *        are required, and test MM.
                    462: *
                    463:          IF( SOMCON ) THEN
                    464:             M = 0
                    465:             PAIR = .FALSE.
                    466:             DO 10 K = 1, N
                    467:                IF( PAIR ) THEN
                    468:                   PAIR = .FALSE.
                    469:                ELSE
                    470:                   IF( K.LT.N ) THEN
                    471:                      IF( A( K+1, K ).EQ.ZERO ) THEN
                    472:                         IF( SELECT( K ) )
                    473:      $                     M = M + 1
                    474:                      ELSE
                    475:                         PAIR = .TRUE.
                    476:                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    477:      $                     M = M + 2
                    478:                      END IF
                    479:                   ELSE
                    480:                      IF( SELECT( N ) )
                    481:      $                  M = M + 1
                    482:                   END IF
                    483:                END IF
                    484:    10       CONTINUE
                    485:          ELSE
                    486:             M = N
                    487:          END IF
                    488: *
                    489:          IF( N.EQ.0 ) THEN
                    490:             LWMIN = 1
                    491:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    492:             LWMIN = 2*N*( N + 2 ) + 16
                    493:          ELSE
                    494:             LWMIN = N
                    495:          END IF
                    496:          WORK( 1 ) = LWMIN
                    497: *
                    498:          IF( MM.LT.M ) THEN
                    499:             INFO = -15
                    500:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    501:             INFO = -18
                    502:          END IF
                    503:       END IF
                    504: *
                    505:       IF( INFO.NE.0 ) THEN
                    506:          CALL XERBLA( 'DTGSNA', -INFO )
                    507:          RETURN
                    508:       ELSE IF( LQUERY ) THEN
                    509:          RETURN
                    510:       END IF
                    511: *
                    512: *     Quick return if possible
                    513: *
                    514:       IF( N.EQ.0 )
                    515:      $   RETURN
                    516: *
                    517: *     Get machine constants
                    518: *
                    519:       EPS = DLAMCH( 'P' )
                    520:       SMLNUM = DLAMCH( 'S' ) / EPS
                    521:       KS = 0
                    522:       PAIR = .FALSE.
                    523: *
                    524:       DO 20 K = 1, N
                    525: *
                    526: *        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block.
                    527: *
                    528:          IF( PAIR ) THEN
                    529:             PAIR = .FALSE.
                    530:             GO TO 20
                    531:          ELSE
                    532:             IF( K.LT.N )
                    533:      $         PAIR = A( K+1, K ).NE.ZERO
                    534:          END IF
                    535: *
                    536: *        Determine whether condition numbers are required for the k-th
                    537: *        eigenpair.
                    538: *
                    539:          IF( SOMCON ) THEN
                    540:             IF( PAIR ) THEN
                    541:                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
                    542:      $            GO TO 20
                    543:             ELSE
                    544:                IF( .NOT.SELECT( K ) )
                    545:      $            GO TO 20
                    546:             END IF
                    547:          END IF
                    548: *
                    549:          KS = KS + 1
                    550: *
                    551:          IF( WANTS ) THEN
                    552: *
                    553: *           Compute the reciprocal condition number of the k-th
                    554: *           eigenvalue.
                    555: *
                    556:             IF( PAIR ) THEN
                    557: *
                    558: *              Complex eigenvalue pair.
                    559: *
                    560:                RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
                    561:      $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
                    562:                LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
                    563:      $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
                    564:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
                    565:      $                     WORK, 1 )
                    566:                TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    567:                TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    568:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS+1 ), 1,
                    569:      $                     ZERO, WORK, 1 )
                    570:                TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    571:                TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    572:                UHAV = TMPRR + TMPII
                    573:                UHAVI = TMPIR - TMPRI
                    574:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
                    575:      $                     WORK, 1 )
                    576:                TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    577:                TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    578:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS+1 ), 1,
                    579:      $                     ZERO, WORK, 1 )
                    580:                TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    581:                TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    582:                UHBV = TMPRR + TMPII
                    583:                UHBVI = TMPIR - TMPRI
                    584:                UHAV = DLAPY2( UHAV, UHAVI )
                    585:                UHBV = DLAPY2( UHBV, UHBVI )
                    586:                COND = DLAPY2( UHAV, UHBV )
                    587:                S( KS ) = COND / ( RNRM*LNRM )
                    588:                S( KS+1 ) = S( KS )
                    589: *
                    590:             ELSE
                    591: *
                    592: *              Real eigenvalue.
                    593: *
                    594:                RNRM = DNRM2( N, VR( 1, KS ), 1 )
                    595:                LNRM = DNRM2( N, VL( 1, KS ), 1 )
                    596:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
                    597:      $                     WORK, 1 )
                    598:                UHAV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    599:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
                    600:      $                     WORK, 1 )
                    601:                UHBV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    602:                COND = DLAPY2( UHAV, UHBV )
                    603:                IF( COND.EQ.ZERO ) THEN
                    604:                   S( KS ) = -ONE
                    605:                ELSE
                    606:                   S( KS ) = COND / ( RNRM*LNRM )
                    607:                END IF
                    608:             END IF
                    609:          END IF
                    610: *
                    611:          IF( WANTDF ) THEN
                    612:             IF( N.EQ.1 ) THEN
                    613:                DIF( KS ) = DLAPY2( A( 1, 1 ), B( 1, 1 ) )
                    614:                GO TO 20
                    615:             END IF
                    616: *
                    617: *           Estimate the reciprocal condition number of the k-th
                    618: *           eigenvectors.
                    619:             IF( PAIR ) THEN
                    620: *
                    621: *              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)).
                    622: *              Compute the eigenvalue(s) at position K.
                    623: *
                    624:                WORK( 1 ) = A( K, K )
                    625:                WORK( 2 ) = A( K+1, K )
                    626:                WORK( 3 ) = A( K, K+1 )
                    627:                WORK( 4 ) = A( K+1, K+1 )
                    628:                WORK( 5 ) = B( K, K )
                    629:                WORK( 6 ) = B( K+1, K )
                    630:                WORK( 7 ) = B( K, K+1 )
                    631:                WORK( 8 ) = B( K+1, K+1 )
                    632:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA,
                    633:      $                     DUMMY1( 1 ), ALPHAR, DUMMY( 1 ), ALPHAI )
                    634:                ALPRQT = ONE
                    635:                C1 = TWO*( ALPHAR*ALPHAR+ALPHAI*ALPHAI+BETA*BETA )
                    636:                C2 = FOUR*BETA*BETA*ALPHAI*ALPHAI
                    637:                ROOT1 = C1 + SQRT( C1*C1-4.0D0*C2 )
                    638:                ROOT2 = C2 / ROOT1
                    639:                ROOT1 = ROOT1 / TWO
                    640:                COND = MIN( SQRT( ROOT1 ), SQRT( ROOT2 ) )
                    641:             END IF
                    642: *
                    643: *           Copy the matrix (A, B) to the array WORK and swap the
                    644: *           diagonal block beginning at A(k,k) to the (1,1) position.
                    645: *
                    646:             CALL DLACPY( 'Full', N, N, A, LDA, WORK, N )
                    647:             CALL DLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
                    648:             IFST = K
                    649:             ILST = 1
                    650: *
                    651:             CALL DTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ), N,
                    652:      $                   DUMMY, 1, DUMMY1, 1, IFST, ILST,
                    653:      $                   WORK( N*N*2+1 ), LWORK-2*N*N, IERR )
                    654: *
                    655:             IF( IERR.GT.0 ) THEN
                    656: *
                    657: *              Ill-conditioned problem - swap rejected.
                    658: *
                    659:                DIF( KS ) = ZERO
                    660:             ELSE
                    661: *
                    662: *              Reordering successful, solve generalized Sylvester
                    663: *              equation for R and L,
                    664: *                         A22 * R - L * A11 = A12
                    665: *                         B22 * R - L * B11 = B12,
                    666: *              and compute estimate of Difl((A11,B11), (A22, B22)).
                    667: *
                    668:                N1 = 1
                    669:                IF( WORK( 2 ).NE.ZERO )
                    670:      $            N1 = 2
                    671:                N2 = N - N1
                    672:                IF( N2.EQ.0 ) THEN
                    673:                   DIF( KS ) = COND
                    674:                ELSE
                    675:                   I = N*N + 1
                    676:                   IZ = 2*N*N + 1
                    677:                   CALL DTGSYL( 'N', DIFDRI, N2, N1, WORK( N*N1+N1+1 ),
                    678:      $                         N, WORK, N, WORK( N1+1 ), N,
                    679:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
                    680:      $                         WORK( N1+I ), N, SCALE, DIF( KS ),
                    681:      $                         WORK( IZ+1 ), LWORK-2*N*N, IWORK, IERR )
                    682: *
                    683:                   IF( PAIR )
                    684:      $               DIF( KS ) = MIN( MAX( ONE, ALPRQT )*DIF( KS ),
                    685:      $                           COND )
                    686:                END IF
                    687:             END IF
                    688:             IF( PAIR )
                    689:      $         DIF( KS+1 ) = DIF( KS )
                    690:          END IF
                    691:          IF( PAIR )
                    692:      $      KS = KS + 1
                    693: *
                    694:    20 CONTINUE
                    695:       WORK( 1 ) = LWMIN
                    696:       RETURN
                    697: *
                    698: *     End of DTGSNA
                    699: *
                    700:       END

CVSweb interface <joel.bertrand@systella.fr>