Annotation of rpl/lapack/lapack/dtgsna.f, revision 1.18

1.9       bertrand    1: *> \brief \b DTGSNA
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DTGSNA + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgsna.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgsna.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgsna.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
                     22: *                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
                     23: *                          IWORK, INFO )
1.15      bertrand   24: *
1.9       bertrand   25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          HOWMNY, JOB
                     27: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
                     28: *       ..
                     29: *       .. Array Arguments ..
                     30: *       LOGICAL            SELECT( * )
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
                     33: *      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                     34: *       ..
1.15      bertrand   35: *
1.9       bertrand   36: *
                     37: *> \par Purpose:
                     38: *  =============
                     39: *>
                     40: *> \verbatim
                     41: *>
                     42: *> DTGSNA estimates reciprocal condition numbers for specified
                     43: *> eigenvalues and/or eigenvectors of a matrix pair (A, B) in
                     44: *> generalized real Schur canonical form (or of any matrix pair
                     45: *> (Q*A*Z**T, Q*B*Z**T) with orthogonal matrices Q and Z, where
                     46: *> Z**T denotes the transpose of Z.
                     47: *>
                     48: *> (A, B) must be in generalized real Schur form (as returned by DGGES),
                     49: *> i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
                     50: *> blocks. B is upper triangular.
                     51: *>
                     52: *> \endverbatim
                     53: *
                     54: *  Arguments:
                     55: *  ==========
                     56: *
                     57: *> \param[in] JOB
                     58: *> \verbatim
                     59: *>          JOB is CHARACTER*1
                     60: *>          Specifies whether condition numbers are required for
                     61: *>          eigenvalues (S) or eigenvectors (DIF):
                     62: *>          = 'E': for eigenvalues only (S);
                     63: *>          = 'V': for eigenvectors only (DIF);
                     64: *>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] HOWMNY
                     68: *> \verbatim
                     69: *>          HOWMNY is CHARACTER*1
                     70: *>          = 'A': compute condition numbers for all eigenpairs;
                     71: *>          = 'S': compute condition numbers for selected eigenpairs
                     72: *>                 specified by the array SELECT.
                     73: *> \endverbatim
                     74: *>
                     75: *> \param[in] SELECT
                     76: *> \verbatim
                     77: *>          SELECT is LOGICAL array, dimension (N)
                     78: *>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
                     79: *>          condition numbers are required. To select condition numbers
                     80: *>          for the eigenpair corresponding to a real eigenvalue w(j),
                     81: *>          SELECT(j) must be set to .TRUE.. To select condition numbers
                     82: *>          corresponding to a complex conjugate pair of eigenvalues w(j)
                     83: *>          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
                     84: *>          set to .TRUE..
                     85: *>          If HOWMNY = 'A', SELECT is not referenced.
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[in] N
                     89: *> \verbatim
                     90: *>          N is INTEGER
                     91: *>          The order of the square matrix pair (A, B). N >= 0.
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[in] A
                     95: *> \verbatim
                     96: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     97: *>          The upper quasi-triangular matrix A in the pair (A,B).
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDA
                    101: *> \verbatim
                    102: *>          LDA is INTEGER
                    103: *>          The leading dimension of the array A. LDA >= max(1,N).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in] B
                    107: *> \verbatim
                    108: *>          B is DOUBLE PRECISION array, dimension (LDB,N)
                    109: *>          The upper triangular matrix B in the pair (A,B).
                    110: *> \endverbatim
                    111: *>
                    112: *> \param[in] LDB
                    113: *> \verbatim
                    114: *>          LDB is INTEGER
                    115: *>          The leading dimension of the array B. LDB >= max(1,N).
                    116: *> \endverbatim
                    117: *>
                    118: *> \param[in] VL
                    119: *> \verbatim
                    120: *>          VL is DOUBLE PRECISION array, dimension (LDVL,M)
                    121: *>          If JOB = 'E' or 'B', VL must contain left eigenvectors of
                    122: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
                    123: *>          and SELECT. The eigenvectors must be stored in consecutive
                    124: *>          columns of VL, as returned by DTGEVC.
                    125: *>          If JOB = 'V', VL is not referenced.
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] LDVL
                    129: *> \verbatim
                    130: *>          LDVL is INTEGER
                    131: *>          The leading dimension of the array VL. LDVL >= 1.
                    132: *>          If JOB = 'E' or 'B', LDVL >= N.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] VR
                    136: *> \verbatim
                    137: *>          VR is DOUBLE PRECISION array, dimension (LDVR,M)
                    138: *>          If JOB = 'E' or 'B', VR must contain right eigenvectors of
                    139: *>          (A, B), corresponding to the eigenpairs specified by HOWMNY
                    140: *>          and SELECT. The eigenvectors must be stored in consecutive
                    141: *>          columns ov VR, as returned by DTGEVC.
                    142: *>          If JOB = 'V', VR is not referenced.
                    143: *> \endverbatim
                    144: *>
                    145: *> \param[in] LDVR
                    146: *> \verbatim
                    147: *>          LDVR is INTEGER
                    148: *>          The leading dimension of the array VR. LDVR >= 1.
                    149: *>          If JOB = 'E' or 'B', LDVR >= N.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] S
                    153: *> \verbatim
                    154: *>          S is DOUBLE PRECISION array, dimension (MM)
                    155: *>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
                    156: *>          selected eigenvalues, stored in consecutive elements of the
                    157: *>          array. For a complex conjugate pair of eigenvalues two
                    158: *>          consecutive elements of S are set to the same value. Thus
                    159: *>          S(j), DIF(j), and the j-th columns of VL and VR all
                    160: *>          correspond to the same eigenpair (but not in general the
                    161: *>          j-th eigenpair, unless all eigenpairs are selected).
                    162: *>          If JOB = 'V', S is not referenced.
                    163: *> \endverbatim
                    164: *>
                    165: *> \param[out] DIF
                    166: *> \verbatim
                    167: *>          DIF is DOUBLE PRECISION array, dimension (MM)
                    168: *>          If JOB = 'V' or 'B', the estimated reciprocal condition
                    169: *>          numbers of the selected eigenvectors, stored in consecutive
                    170: *>          elements of the array. For a complex eigenvector two
                    171: *>          consecutive elements of DIF are set to the same value. If
                    172: *>          the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
                    173: *>          is set to 0; this can only occur when the true value would be
                    174: *>          very small anyway.
                    175: *>          If JOB = 'E', DIF is not referenced.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[in] MM
                    179: *> \verbatim
                    180: *>          MM is INTEGER
                    181: *>          The number of elements in the arrays S and DIF. MM >= M.
                    182: *> \endverbatim
                    183: *>
                    184: *> \param[out] M
                    185: *> \verbatim
                    186: *>          M is INTEGER
                    187: *>          The number of elements of the arrays S and DIF used to store
                    188: *>          the specified condition numbers; for each selected real
                    189: *>          eigenvalue one element is used, and for each selected complex
                    190: *>          conjugate pair of eigenvalues, two elements are used.
                    191: *>          If HOWMNY = 'A', M is set to N.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] WORK
                    195: *> \verbatim
                    196: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    197: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LWORK
                    201: *> \verbatim
                    202: *>          LWORK is INTEGER
                    203: *>          The dimension of the array WORK. LWORK >= max(1,N).
                    204: *>          If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
                    205: *>
                    206: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    207: *>          only calculates the optimal size of the WORK array, returns
                    208: *>          this value as the first entry of the WORK array, and no error
                    209: *>          message related to LWORK is issued by XERBLA.
                    210: *> \endverbatim
                    211: *>
                    212: *> \param[out] IWORK
                    213: *> \verbatim
                    214: *>          IWORK is INTEGER array, dimension (N + 6)
                    215: *>          If JOB = 'E', IWORK is not referenced.
                    216: *> \endverbatim
                    217: *>
                    218: *> \param[out] INFO
                    219: *> \verbatim
                    220: *>          INFO is INTEGER
                    221: *>          =0: Successful exit
                    222: *>          <0: If INFO = -i, the i-th argument had an illegal value
                    223: *> \endverbatim
                    224: *
                    225: *  Authors:
                    226: *  ========
                    227: *
1.15      bertrand  228: *> \author Univ. of Tennessee
                    229: *> \author Univ. of California Berkeley
                    230: *> \author Univ. of Colorado Denver
                    231: *> \author NAG Ltd.
1.9       bertrand  232: *
                    233: *> \ingroup doubleOTHERcomputational
                    234: *
                    235: *> \par Further Details:
                    236: *  =====================
                    237: *>
                    238: *> \verbatim
                    239: *>
                    240: *>  The reciprocal of the condition number of a generalized eigenvalue
                    241: *>  w = (a, b) is defined as
                    242: *>
                    243: *>       S(w) = (|u**TAv|**2 + |u**TBv|**2)**(1/2) / (norm(u)*norm(v))
                    244: *>
                    245: *>  where u and v are the left and right eigenvectors of (A, B)
                    246: *>  corresponding to w; |z| denotes the absolute value of the complex
                    247: *>  number, and norm(u) denotes the 2-norm of the vector u.
                    248: *>  The pair (a, b) corresponds to an eigenvalue w = a/b (= u**TAv/u**TBv)
                    249: *>  of the matrix pair (A, B). If both a and b equal zero, then (A B) is
                    250: *>  singular and S(I) = -1 is returned.
                    251: *>
                    252: *>  An approximate error bound on the chordal distance between the i-th
                    253: *>  computed generalized eigenvalue w and the corresponding exact
                    254: *>  eigenvalue lambda is
                    255: *>
                    256: *>       chord(w, lambda) <= EPS * norm(A, B) / S(I)
                    257: *>
                    258: *>  where EPS is the machine precision.
                    259: *>
                    260: *>  The reciprocal of the condition number DIF(i) of right eigenvector u
                    261: *>  and left eigenvector v corresponding to the generalized eigenvalue w
                    262: *>  is defined as follows:
                    263: *>
                    264: *>  a) If the i-th eigenvalue w = (a,b) is real
                    265: *>
                    266: *>     Suppose U and V are orthogonal transformations such that
                    267: *>
                    268: *>              U**T*(A, B)*V  = (S, T) = ( a   *  ) ( b  *  )  1
                    269: *>                                        ( 0  S22 ),( 0 T22 )  n-1
                    270: *>                                          1  n-1     1 n-1
                    271: *>
                    272: *>     Then the reciprocal condition number DIF(i) is
                    273: *>
                    274: *>                Difl((a, b), (S22, T22)) = sigma-min( Zl ),
                    275: *>
                    276: *>     where sigma-min(Zl) denotes the smallest singular value of the
                    277: *>     2(n-1)-by-2(n-1) matrix
                    278: *>
                    279: *>         Zl = [ kron(a, In-1)  -kron(1, S22) ]
                    280: *>              [ kron(b, In-1)  -kron(1, T22) ] .
                    281: *>
                    282: *>     Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
                    283: *>     Kronecker product between the matrices X and Y.
                    284: *>
                    285: *>     Note that if the default method for computing DIF(i) is wanted
                    286: *>     (see DLATDF), then the parameter DIFDRI (see below) should be
                    287: *>     changed from 3 to 4 (routine DLATDF(IJOB = 2 will be used)).
                    288: *>     See DTGSYL for more details.
                    289: *>
                    290: *>  b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
                    291: *>
                    292: *>     Suppose U and V are orthogonal transformations such that
                    293: *>
                    294: *>              U**T*(A, B)*V = (S, T) = ( S11  *   ) ( T11  *  )  2
                    295: *>                                       ( 0    S22 ),( 0    T22) n-2
                    296: *>                                         2    n-2     2    n-2
                    297: *>
                    298: *>     and (S11, T11) corresponds to the complex conjugate eigenvalue
                    299: *>     pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
                    300: *>     that
                    301: *>
                    302: *>       U1**T*S11*V1 = ( s11 s12 ) and U1**T*T11*V1 = ( t11 t12 )
                    303: *>                      (  0  s22 )                    (  0  t22 )
                    304: *>
                    305: *>     where the generalized eigenvalues w = s11/t11 and
                    306: *>     conjg(w) = s22/t22.
                    307: *>
                    308: *>     Then the reciprocal condition number DIF(i) is bounded by
                    309: *>
                    310: *>         min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
                    311: *>
                    312: *>     where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
                    313: *>     Z1 is the complex 2-by-2 matrix
                    314: *>
                    315: *>              Z1 =  [ s11  -s22 ]
                    316: *>                    [ t11  -t22 ],
                    317: *>
                    318: *>     This is done by computing (using real arithmetic) the
                    319: *>     roots of the characteristical polynomial det(Z1**T * Z1 - lambda I),
                    320: *>     where Z1**T denotes the transpose of Z1 and det(X) denotes
                    321: *>     the determinant of X.
                    322: *>
                    323: *>     and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
                    324: *>     upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
                    325: *>
                    326: *>              Z2 = [ kron(S11**T, In-2)  -kron(I2, S22) ]
                    327: *>                   [ kron(T11**T, In-2)  -kron(I2, T22) ]
                    328: *>
                    329: *>     Note that if the default method for computing DIF is wanted (see
                    330: *>     DLATDF), then the parameter DIFDRI (see below) should be changed
                    331: *>     from 3 to 4 (routine DLATDF(IJOB = 2 will be used)). See DTGSYL
                    332: *>     for more details.
                    333: *>
                    334: *>  For each eigenvalue/vector specified by SELECT, DIF stores a
                    335: *>  Frobenius norm-based estimate of Difl.
                    336: *>
                    337: *>  An approximate error bound for the i-th computed eigenvector VL(i) or
                    338: *>  VR(i) is given by
                    339: *>
                    340: *>             EPS * norm(A, B) / DIF(i).
                    341: *>
                    342: *>  See ref. [2-3] for more details and further references.
                    343: *> \endverbatim
                    344: *
                    345: *> \par Contributors:
                    346: *  ==================
                    347: *>
                    348: *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
                    349: *>     Umea University, S-901 87 Umea, Sweden.
                    350: *
                    351: *> \par References:
                    352: *  ================
                    353: *>
                    354: *> \verbatim
                    355: *>
                    356: *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
                    357: *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
                    358: *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
                    359: *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
                    360: *>
                    361: *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
                    362: *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
                    363: *>      Estimation: Theory, Algorithms and Software,
                    364: *>      Report UMINF - 94.04, Department of Computing Science, Umea
                    365: *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
                    366: *>      Note 87. To appear in Numerical Algorithms, 1996.
                    367: *>
                    368: *>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
                    369: *>      for Solving the Generalized Sylvester Equation and Estimating the
                    370: *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
                    371: *>      Department of Computing Science, Umea University, S-901 87 Umea,
                    372: *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
                    373: *>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
                    374: *>      No 1, 1996.
                    375: *> \endverbatim
                    376: *>
                    377: *  =====================================================================
1.1       bertrand  378:       SUBROUTINE DTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
                    379:      $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
                    380:      $                   IWORK, INFO )
                    381: *
1.18    ! bertrand  382: *  -- LAPACK computational routine --
1.1       bertrand  383: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    384: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    385: *
                    386: *     .. Scalar Arguments ..
                    387:       CHARACTER          HOWMNY, JOB
                    388:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
                    389: *     ..
                    390: *     .. Array Arguments ..
                    391:       LOGICAL            SELECT( * )
                    392:       INTEGER            IWORK( * )
                    393:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
                    394:      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * )
                    395: *     ..
                    396: *
                    397: *  =====================================================================
                    398: *
                    399: *     .. Parameters ..
                    400:       INTEGER            DIFDRI
                    401:       PARAMETER          ( DIFDRI = 3 )
                    402:       DOUBLE PRECISION   ZERO, ONE, TWO, FOUR
                    403:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
                    404:      $                   FOUR = 4.0D+0 )
                    405: *     ..
                    406: *     .. Local Scalars ..
                    407:       LOGICAL            LQUERY, PAIR, SOMCON, WANTBH, WANTDF, WANTS
                    408:       INTEGER            I, IERR, IFST, ILST, IZ, K, KS, LWMIN, N1, N2
                    409:       DOUBLE PRECISION   ALPHAI, ALPHAR, ALPRQT, BETA, C1, C2, COND,
                    410:      $                   EPS, LNRM, RNRM, ROOT1, ROOT2, SCALE, SMLNUM,
                    411:      $                   TMPII, TMPIR, TMPRI, TMPRR, UHAV, UHAVI, UHBV,
                    412:      $                   UHBVI
                    413: *     ..
                    414: *     .. Local Arrays ..
                    415:       DOUBLE PRECISION   DUMMY( 1 ), DUMMY1( 1 )
                    416: *     ..
                    417: *     .. External Functions ..
                    418:       LOGICAL            LSAME
                    419:       DOUBLE PRECISION   DDOT, DLAMCH, DLAPY2, DNRM2
                    420:       EXTERNAL           LSAME, DDOT, DLAMCH, DLAPY2, DNRM2
                    421: *     ..
                    422: *     .. External Subroutines ..
                    423:       EXTERNAL           DGEMV, DLACPY, DLAG2, DTGEXC, DTGSYL, XERBLA
                    424: *     ..
                    425: *     .. Intrinsic Functions ..
                    426:       INTRINSIC          MAX, MIN, SQRT
                    427: *     ..
                    428: *     .. Executable Statements ..
                    429: *
                    430: *     Decode and test the input parameters
                    431: *
                    432:       WANTBH = LSAME( JOB, 'B' )
                    433:       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
                    434:       WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
                    435: *
                    436:       SOMCON = LSAME( HOWMNY, 'S' )
                    437: *
                    438:       INFO = 0
                    439:       LQUERY = ( LWORK.EQ.-1 )
                    440: *
                    441:       IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
                    442:          INFO = -1
                    443:       ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
                    444:          INFO = -2
                    445:       ELSE IF( N.LT.0 ) THEN
                    446:          INFO = -4
                    447:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    448:          INFO = -6
                    449:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    450:          INFO = -8
                    451:       ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
                    452:          INFO = -10
                    453:       ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
                    454:          INFO = -12
                    455:       ELSE
                    456: *
                    457: *        Set M to the number of eigenpairs for which condition numbers
                    458: *        are required, and test MM.
                    459: *
                    460:          IF( SOMCON ) THEN
                    461:             M = 0
                    462:             PAIR = .FALSE.
                    463:             DO 10 K = 1, N
                    464:                IF( PAIR ) THEN
                    465:                   PAIR = .FALSE.
                    466:                ELSE
                    467:                   IF( K.LT.N ) THEN
                    468:                      IF( A( K+1, K ).EQ.ZERO ) THEN
                    469:                         IF( SELECT( K ) )
                    470:      $                     M = M + 1
                    471:                      ELSE
                    472:                         PAIR = .TRUE.
                    473:                         IF( SELECT( K ) .OR. SELECT( K+1 ) )
                    474:      $                     M = M + 2
                    475:                      END IF
                    476:                   ELSE
                    477:                      IF( SELECT( N ) )
                    478:      $                  M = M + 1
                    479:                   END IF
                    480:                END IF
                    481:    10       CONTINUE
                    482:          ELSE
                    483:             M = N
                    484:          END IF
                    485: *
                    486:          IF( N.EQ.0 ) THEN
                    487:             LWMIN = 1
                    488:          ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
                    489:             LWMIN = 2*N*( N + 2 ) + 16
                    490:          ELSE
                    491:             LWMIN = N
                    492:          END IF
                    493:          WORK( 1 ) = LWMIN
                    494: *
                    495:          IF( MM.LT.M ) THEN
                    496:             INFO = -15
                    497:          ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
                    498:             INFO = -18
                    499:          END IF
                    500:       END IF
                    501: *
                    502:       IF( INFO.NE.0 ) THEN
                    503:          CALL XERBLA( 'DTGSNA', -INFO )
                    504:          RETURN
                    505:       ELSE IF( LQUERY ) THEN
                    506:          RETURN
                    507:       END IF
                    508: *
                    509: *     Quick return if possible
                    510: *
                    511:       IF( N.EQ.0 )
                    512:      $   RETURN
                    513: *
                    514: *     Get machine constants
                    515: *
                    516:       EPS = DLAMCH( 'P' )
                    517:       SMLNUM = DLAMCH( 'S' ) / EPS
                    518:       KS = 0
                    519:       PAIR = .FALSE.
                    520: *
                    521:       DO 20 K = 1, N
                    522: *
                    523: *        Determine whether A(k,k) begins a 1-by-1 or 2-by-2 block.
                    524: *
                    525:          IF( PAIR ) THEN
                    526:             PAIR = .FALSE.
                    527:             GO TO 20
                    528:          ELSE
                    529:             IF( K.LT.N )
                    530:      $         PAIR = A( K+1, K ).NE.ZERO
                    531:          END IF
                    532: *
                    533: *        Determine whether condition numbers are required for the k-th
                    534: *        eigenpair.
                    535: *
                    536:          IF( SOMCON ) THEN
                    537:             IF( PAIR ) THEN
                    538:                IF( .NOT.SELECT( K ) .AND. .NOT.SELECT( K+1 ) )
                    539:      $            GO TO 20
                    540:             ELSE
                    541:                IF( .NOT.SELECT( K ) )
                    542:      $            GO TO 20
                    543:             END IF
                    544:          END IF
                    545: *
                    546:          KS = KS + 1
                    547: *
                    548:          IF( WANTS ) THEN
                    549: *
                    550: *           Compute the reciprocal condition number of the k-th
                    551: *           eigenvalue.
                    552: *
                    553:             IF( PAIR ) THEN
                    554: *
                    555: *              Complex eigenvalue pair.
                    556: *
                    557:                RNRM = DLAPY2( DNRM2( N, VR( 1, KS ), 1 ),
                    558:      $                DNRM2( N, VR( 1, KS+1 ), 1 ) )
                    559:                LNRM = DLAPY2( DNRM2( N, VL( 1, KS ), 1 ),
                    560:      $                DNRM2( N, VL( 1, KS+1 ), 1 ) )
                    561:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
                    562:      $                     WORK, 1 )
                    563:                TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    564:                TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    565:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS+1 ), 1,
                    566:      $                     ZERO, WORK, 1 )
                    567:                TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    568:                TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    569:                UHAV = TMPRR + TMPII
                    570:                UHAVI = TMPIR - TMPRI
                    571:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
                    572:      $                     WORK, 1 )
                    573:                TMPRR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    574:                TMPRI = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    575:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS+1 ), 1,
                    576:      $                     ZERO, WORK, 1 )
                    577:                TMPII = DDOT( N, WORK, 1, VL( 1, KS+1 ), 1 )
                    578:                TMPIR = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    579:                UHBV = TMPRR + TMPII
                    580:                UHBVI = TMPIR - TMPRI
                    581:                UHAV = DLAPY2( UHAV, UHAVI )
                    582:                UHBV = DLAPY2( UHBV, UHBVI )
                    583:                COND = DLAPY2( UHAV, UHBV )
                    584:                S( KS ) = COND / ( RNRM*LNRM )
                    585:                S( KS+1 ) = S( KS )
                    586: *
                    587:             ELSE
                    588: *
                    589: *              Real eigenvalue.
                    590: *
                    591:                RNRM = DNRM2( N, VR( 1, KS ), 1 )
                    592:                LNRM = DNRM2( N, VL( 1, KS ), 1 )
                    593:                CALL DGEMV( 'N', N, N, ONE, A, LDA, VR( 1, KS ), 1, ZERO,
                    594:      $                     WORK, 1 )
                    595:                UHAV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    596:                CALL DGEMV( 'N', N, N, ONE, B, LDB, VR( 1, KS ), 1, ZERO,
                    597:      $                     WORK, 1 )
                    598:                UHBV = DDOT( N, WORK, 1, VL( 1, KS ), 1 )
                    599:                COND = DLAPY2( UHAV, UHBV )
                    600:                IF( COND.EQ.ZERO ) THEN
                    601:                   S( KS ) = -ONE
                    602:                ELSE
                    603:                   S( KS ) = COND / ( RNRM*LNRM )
                    604:                END IF
                    605:             END IF
                    606:          END IF
                    607: *
                    608:          IF( WANTDF ) THEN
                    609:             IF( N.EQ.1 ) THEN
                    610:                DIF( KS ) = DLAPY2( A( 1, 1 ), B( 1, 1 ) )
                    611:                GO TO 20
                    612:             END IF
                    613: *
                    614: *           Estimate the reciprocal condition number of the k-th
                    615: *           eigenvectors.
                    616:             IF( PAIR ) THEN
                    617: *
                    618: *              Copy the  2-by 2 pencil beginning at (A(k,k), B(k, k)).
                    619: *              Compute the eigenvalue(s) at position K.
                    620: *
                    621:                WORK( 1 ) = A( K, K )
                    622:                WORK( 2 ) = A( K+1, K )
                    623:                WORK( 3 ) = A( K, K+1 )
                    624:                WORK( 4 ) = A( K+1, K+1 )
                    625:                WORK( 5 ) = B( K, K )
                    626:                WORK( 6 ) = B( K+1, K )
                    627:                WORK( 7 ) = B( K, K+1 )
                    628:                WORK( 8 ) = B( K+1, K+1 )
                    629:                CALL DLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA,
                    630:      $                     DUMMY1( 1 ), ALPHAR, DUMMY( 1 ), ALPHAI )
                    631:                ALPRQT = ONE
                    632:                C1 = TWO*( ALPHAR*ALPHAR+ALPHAI*ALPHAI+BETA*BETA )
                    633:                C2 = FOUR*BETA*BETA*ALPHAI*ALPHAI
                    634:                ROOT1 = C1 + SQRT( C1*C1-4.0D0*C2 )
                    635:                ROOT2 = C2 / ROOT1
                    636:                ROOT1 = ROOT1 / TWO
                    637:                COND = MIN( SQRT( ROOT1 ), SQRT( ROOT2 ) )
                    638:             END IF
                    639: *
                    640: *           Copy the matrix (A, B) to the array WORK and swap the
                    641: *           diagonal block beginning at A(k,k) to the (1,1) position.
                    642: *
                    643:             CALL DLACPY( 'Full', N, N, A, LDA, WORK, N )
                    644:             CALL DLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
                    645:             IFST = K
                    646:             ILST = 1
                    647: *
                    648:             CALL DTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ), N,
                    649:      $                   DUMMY, 1, DUMMY1, 1, IFST, ILST,
                    650:      $                   WORK( N*N*2+1 ), LWORK-2*N*N, IERR )
                    651: *
                    652:             IF( IERR.GT.0 ) THEN
                    653: *
                    654: *              Ill-conditioned problem - swap rejected.
                    655: *
                    656:                DIF( KS ) = ZERO
                    657:             ELSE
                    658: *
                    659: *              Reordering successful, solve generalized Sylvester
                    660: *              equation for R and L,
                    661: *                         A22 * R - L * A11 = A12
                    662: *                         B22 * R - L * B11 = B12,
                    663: *              and compute estimate of Difl((A11,B11), (A22, B22)).
                    664: *
                    665:                N1 = 1
                    666:                IF( WORK( 2 ).NE.ZERO )
                    667:      $            N1 = 2
                    668:                N2 = N - N1
                    669:                IF( N2.EQ.0 ) THEN
                    670:                   DIF( KS ) = COND
                    671:                ELSE
                    672:                   I = N*N + 1
                    673:                   IZ = 2*N*N + 1
                    674:                   CALL DTGSYL( 'N', DIFDRI, N2, N1, WORK( N*N1+N1+1 ),
                    675:      $                         N, WORK, N, WORK( N1+1 ), N,
                    676:      $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
                    677:      $                         WORK( N1+I ), N, SCALE, DIF( KS ),
                    678:      $                         WORK( IZ+1 ), LWORK-2*N*N, IWORK, IERR )
                    679: *
                    680:                   IF( PAIR )
                    681:      $               DIF( KS ) = MIN( MAX( ONE, ALPRQT )*DIF( KS ),
                    682:      $                           COND )
                    683:                END IF
                    684:             END IF
                    685:             IF( PAIR )
                    686:      $         DIF( KS+1 ) = DIF( KS )
                    687:          END IF
                    688:          IF( PAIR )
                    689:      $      KS = KS + 1
                    690: *
                    691:    20 CONTINUE
                    692:       WORK( 1 ) = LWMIN
                    693:       RETURN
                    694: *
                    695: *     End of DTGSNA
                    696: *
                    697:       END

CVSweb interface <joel.bertrand@systella.fr>